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Reinforcement Learning



Reinforcement Learning for Robotics (1)

Rajeswaran et al. (2017)



Reinforcement Learning for Robotics (2)

Kumar et al. (2016)



Reinforcement Learning for Robotics (3)

Levine et al. (2018)
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• Reinforcement learning for the real world  

• High-dimensional control 

• Noisy and partial observations  

• Manipulating more than one object

Challenges



Reinforcement Learning 

+ 

Domain Randomization



Reinforcement Learning
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Action at

State st+1 and reward rt

Reinforcement Learning (1)
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Reinforcement Learning (2)

• Formalize as Markov decision process 

• Agent uses a policy to select actions:

at ∼ π( ⋅ ∣ st)

ℳ = (", #, $, ρ, r)

Set of states

Set of actions

Transition probabilities: st+1 ∼ $( ⋅ ∣ , st, at)

Initial state distribution: s0 ∼ ρ( ⋅ )

Reward function: r : " × #



Reinforcement Learning (3)

• Let τ denote a trajectory with   s0 ∼ ρ( ⋅ ), at ∼ π( ⋅ ∣ st), st+1 ∼ $( ⋅ ∣ st, at)



Reinforcement Learning (3)

• Let τ denote a trajectory with  

• The discounted return is then defined as:  

 

 

s0 ∼ ρ( ⋅ ), at ∼ π( ⋅ ∣ st), st+1 ∼ $( ⋅ ∣ st, at)

R(τ) := ∑
t

γ
tr(st, at) γ ∈ [0,1)



Reinforcement Learning (3)

• Let τ denote a trajectory with  

• The discounted return is then defined as:  

 

 

 

• We wish to find a policy that maximizes the 

expected discounted return: 

s0 ∼ ρ( ⋅ ), at ∼ π( ⋅ ∣ st), st+1 ∼ $( ⋅ ∣ st, at)

R(τ) := ∑
t

γ
tr(st, at) γ ∈ [0,1)

π* := arg max
π

*
τ [R(τ)]



Reinforcement Learning (4)

• Depending on the assumptions, many methods 

exist to find optimal policies. Examples are:


• Dynamic programming


• Policy gradient methods


• Q learning 

• This talk will focus on policy gradient methods 

• Policy gradients are model-free, i.e. we do not 

know the transition distribution
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Policy Gradients (1)

• Let’s assume a parameterized policy πθ, where θ 

is some parameter vector 

• Our optimization objective then is:  

 

 

 

 

 

• Simple idea: Let’s compute the gradient w.r.t. θ 

and do gradient ascent

J(θ) := *
τ [R(τ)]

has a dependency on θ through τ 

has no dependency on θ
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• Probability of a trajectory τ is:  

 

 
p(τ) = ρ(s0)∏

t
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Policy Gradients (4)

• Goal: Compute  

• Probability of a trajectory τ is:  

 

 

 

• Taking the gradient:

p(τ) = ρ(s0)∏
t

$(st+1 ∣ st, at)πθ(at ∣ st)

log p(τ) = log ρ(s0) + ∑
t

log $(st+1 ∣ st, at) + log πθ(at ∣ st)

∇θlog p(τ) = ∑
t

∇θlog πθ(at ∣ st)

∇θlog p(τ)
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Policy Gradients (5)

• Putting it all together: 

 

 

 

 

 

 

 

 

 

 

• Last missing piece: Computing the expectation

∇θJ(θ) = ∇θ*
τ [R(τ)]

= *
τ [R(τ)∑

t

∇θlog πθ(at ∣ st)]

= ∫ R(τ)∇θ p(τ)dτ

= *
τ [R(τ)∇θlog p(τ)]



Policy Gradients (6)

• Goal: Compute expectation of:  

 

  ∇θJ(θ) = *
τ [R(τ)∑

t

∇θlog πθ(at ∣ st)]



Policy Gradients (6)

• Goal: Compute expectation of:  

 

 

 

• Can be estimated using Monte Carlo sampling, 

which corresponds to rolling out the policy 

multiple times to collect N trajectories:

∇θJ(θ) = *
τ [R(τ)∑

t

∇θlog πθ(at ∣ st)]

τ
(1), τ

(2), …, τ
(N)



Policy Gradients (6)

• Goal: Compute expectation of:  

 

 

 

• Can be estimated using Monte Carlo sampling, 

which corresponds to rolling out the policy 

multiple times to collect N trajectories: 

• Our final estimate of the policy gradient is thus:

∇θJ(θ) = *
τ [R(τ)∑

t

∇θlog πθ(at ∣ st)]

τ
(1), τ

(2), …, τ
(N)

∇θJ(θ) ≈
1

N

N

∑
n=1

[R(τ(n))∑
t

∇θlog πθ(a
(n)
t

∣ s
(n)
t

)]



Policy Gradients (7)

1. Initialize θ arbitrarily


2. Repeat


1. Collect N trajectories


2. Estimate gradient:  

 

 

3. Update parameters:  

τ
(1), τ

(2), …, τ
(N)

̂g ←
1

N

N

∑
n=1

[R(τ(n))∑
t

∇θlog πθ(a
(n)
t

∣ s
(n)
t

)]
θ ← θ + α ̂g



Proximal Policy Optimization

• Vanilla policy gradient algorithm simple but has 

several shortcomings 

• We use Proximal Policy Optimization (PPO) in all 

our experiments (Schulman et al., 2017)  

• Underlaying idea is exactly the same but uses


• Baselines for variance reduction with 

generalized advantage estimation


• Importance sampling to use slightly off-policy 

data


• Clipping to improve stability



Reward Function

•                                 ,  

where dt and dt+1 denote the rotation angle 

between the desired and current orientation 

before and after the transition 

• On success: +5 

• On drop: -20

rt = dt − dt+1
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Domain Randomization



Sadeghi & Levine (2017)

Domain Randomization (1)



Tobin et al. (2017)

Domain Randomization (2)





Vision Randomizations
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Peng et al. (2018)

Physics Randomizations (1)



object dimensions 

object and robot link masses 

surface friction coefficients 

robot joint damping coefficients 

actuator force gains 

joint limits 

gravity vector

Physics Randomizations (2)



Full System Recap
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Ablation of Randomizations
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Surprises

• Tactile sensing is not necessary to manipulate 

real-world objects 

• Randomizations developed for one object 

generalize to others with similar properties  

• With physical robots, good systems engineering 

is as important as good algorithms



Challenges Ahead

• Less manual tuning in domain randomization 

• Make use of demonstrations 

• Faster learning in real world



Blog Post

https://arxiv.org/pdf/1808.00177.pdfhttps://blog.openai.com/learning-dexterity/

Pre-print

https://arxiv.org/pdf/1808.00177.pdf
https://blog.openai.com/learning-dexterity/
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