SEPTEMBER 6, 2018

OpenAl

"OpenAlis a non-profit AT research company,
discovering and enacting the path to safe
artificial general intelligence.”

OpenAl

"OpenAlisa AT research company,
discovering and enacting the path to safe
artificial general intelligence.”

OpenAl

"OpenAlisa AT research company,
discovering and enacting the path to safe
artificial general intelligence.”

OpenAl

"OpenAlisa AT research company,
discovering and enacting the path to safe
artificial general intelligence.”

OpenAlI Charter

e Broadly Distributed Benefits
e Long-Term Safety

e Technical Leadership

e Cooperative Orientation

 Full text available on our blog:
https://blog.openai.com/openai-charter/

https://blog.openai.com/openai-charter/

Learning Dexterity

A ~
i

N
"‘ y N »
RN L3 g s
Lo
- u -

¢ x

g\
¥)
,e
-
)
\
|

M‘

é
q

?

'. 4

- . ERa™=
fezanees

= = i;""'

-

Reinforcement Learning

X

AphaGe

GO (ALPHAGO ZERO) DOTA 2 (OPENAI FIVE)

Reinforcement Learning for Robotics (1)

Rajeswaran et al. (2017)

Reinforcement Learning for Robotics (2)

Kumar et al. (2016)

Reinforcement Learning for Robotics (3)

Levine et al. (2018)

Sim2Real

SIMULATION ENVIRONMENT REAL-WORLD ENVIRONMENT

REAL-WORLD ENVIRONMENT

Task & Setup

Shadow Dexterous Hand

PhaseSpace tracking

Top RGB camera

Right RGB camera Left RGB camera

Challenges

e Reinforcement learning for the real world
e High-dimensional control
e Noisy and partial observations

e Manipulating more than one object

Reinforcement Learning
+

Domain Randomization

Reinforcement Learning

Reinforcement Learning (1)

Action at

State st.1 and reward r;

Reinforcement Learning (2)

 Formalize as Markov decision process

M= (S5, A, P, p,r)

Reinforcement Learning (2)

 Formalize as Markov decision process

M= (S5, A, P, p,r)

Reinforcement Learning (2)

 Formalize as Markov decision process

M= (S5, A, P, p,r)

Reinforcement Learning (2)

 Formalize as Markov decision process

M= (S5, A, P, p,r)

Reinforcement Learning (2)

 Formalize as Markov decision process

ransition probabilities: s, ~ L(- | ,s,a,)

M= (S, %f, P, p,)

Set of actions

Initial state distribution: s, ~ p(-)

Reinforcement Learning (2)

 Formalize as Markov decision process

ransition probabilities: s, ~ L(- | ,s,a,)

Reward function: r: & X &

|
= (S, Z ,,Q,_)

Set of actions

Initial state distribution: s, ~ p(-)

Reinforcement Learning (2)

 Formalize as Markov decision process

ransition probabilities: s, ~ L(- | ,s,a,)

Reward function: r: & X &

|
= (S, 7 ,,Q,_)

Set of actions

Initial state distribution: sy ~ p(-)
 Agent uses a policy to select actions:

dtNﬂ('lSt)

Reinforcement Learning (3)

» Let T denote a trajectory with s, ~ p(-),a, ~ z(-|s,),s,., ~ P(-|s,a,

Reinforcement Learning (3)
* Let T denote a trajectory with sy ~ p(-),a, ~ n(-|s,),8,.1~ P(-|s,a,)

e The discounted return is then defined as:

R(7) := 2 y'r(s,a,) y € [0,1)

[

Reinforcement Learning (3)
* Let T denote a trajectory with sy ~ p(-),a, ~ n(-|s,),8,.1~ P(-|s,a,)

e The discounted return is then defined as:

R(7) := 2 y'r(s,a,) y € [0,1)

[

 \We wish to find a policy that maximizes the
expected discounted return:

r* = argmax [k [R(T)]

U

Reinforcement Learning (4)

 Depending on the assumptions, many methods
exist to find optimal policies. Examples are:
 Dynamic programming
* Policy gradient methods
e Q learning

e This talk will focus on policy gradient methods

* Policy gradients are model-free, i.e. we do not
know the transition distribution

Policy Gradients (1)

* Let’s assume a parameterized policy 11, Where 0
IS some parameter vector

Policy Gradients (1)

* Let’s assume a parameterized policy 11, Where 0
IS some parameter vector

* Qur optimization objective then is:

J@) = [R(T)]

Policy Gradients (1)

* Let’s assume a parameterized policy 11, Where 0
IS some parameter vector

* Qur optimization objective then is:

has a dependency on 6 through T

l
J@) = [R({c)]

has no dependency on 6

Policy Gradients (1)

* Let’s assume a parameterized policy 11, Where 0
IS some parameter vector

* Qur optimization objective then is:

has a dependency on 6 through T

l
J@@) =, [R({c)]

has no dependency on 6

e Simple idea: Let’s compute the gradient w.r.t. 6
and do gradient ascent

Policy Gradients (2)

+ Goal: Compute the gradient VgJ(0) = V4E, [R(7)|

Policy Gradients (2)

+ Goal: Compute the gradient VgJ(0) = V4E, [R(7)|

 Expanding the expectation and rearranging we
get:

VoJ(@) =V, [[R(T)p(”[)dfl

Policy Gradients (2)

+ Goal: Compute the gradient VgJ(0) = V4E, [R(7)|

 Expanding the expectation and rearranging we
get:

VoJ(@) =V, [[R(T)p(”[)dfl

= JR(T) Vop(r)dr

Policy Gradients (3)

» Goal: Compute VyJ(0) = JR(T) Vop(r)dr

Policy Gradients (3)

» Goal: Compute VyJ(0) = JR(T) Vop(r)dr

Policy Gradients (3)
» Goal: Compute VyJ(0) = JR(T) Vop(r)dr

 Use the "log derivative trick":

Vglog p(7) = Vop(r) < Vyp(r)|= Vylog p(r)p(7)

p(7)

Policy Gradients (3)
» Goal: Compute VyJ(0) = JR(T) Vop(r)dr

 Use the "log derivative trick":

Vglog p(7) = Vop(r) < Vyp(r)|= Vylog p(r)p(7)

p(7)

e ... and plug back in to obtain:

VgJ(0) = JR(T) Vglog p(t)p(7)dr

Policy Gradients (3)
» Goal: Compute VyJ(0) = JR(T) Vop(r)dr

 Use the "log derivative trick":

Vglog p(7) = Vop(r) < Vyp(r)|= Vylog p(r)p(7)

p(7)

e ... and plug back in to obtain:

VgJ(0) = JR(T) Vglog p(t)p(7)dr

= E, |R(7) Vglog p(7)]

Policy Gradients (4)

e Goal: Compute VHIOgP(T)

Policy Gradients (4)

e Goal: Compute VHIOgP(T)

* Probability of a trajectory T is:

p(@) = pso) | | P41 | 5 a)my(a, | 5)

Policy Gradients (4)

e Goal: Compute VHIOgP(T)

* Probability of a trajectory T is:

p(@) = pso) | | P41 | 5 a)my(a, | 5)

log p(z) = log p(sy) +) log P(s,,, | s,.a) + log my(a, | 5,)
[

Policy Gradients (4)

e Goal: Compute VHIOgP(T)

* Probability of a trajectory T is:

p(@) = pGso) | | P41 1 5 a)my(a, | 5)

log p(z) = log p(sy) +) log P(s,,, | s,.a) + log 7y(a, | 5,)
[

e Taking the gradient:
Vyglog p(r) = 2 Volog my(a, | s,
t

Policy Gradients (5)

o Putting it all together:
VoJ(0) = VyE, |R(7))

Policy Gradients (5)

o Putting it all together:
VoJ(0) = VyE, |R(7))

= JR(T) Vop(r)dr

Policy Gradients (5)

o Putting it all together:
VoJ(0) = VyE, |R(7))

= JR(T) Vop(r)dr

= E, |R(z) Vglog p(7)]

Policy Gradients (5)

o Putting it all together:
VoJ(0) = VyE, |R(7))

= JR(T) Vop(r)dr

= |R(x) Vglog p(7)]

= [R(T) Z Volog mp(a, | s,)

Policy Gradients (5)

o Putting it all together:
VoJ(0) = VyE, |R(7))

= JR(T) Vop(r)dr

= |[R(x) Vglog p(7)]

= [R(T) Z Volog mp(a, | s,)

e Last missing piece: Computing the expectation

Policy Gradients (6)

 Goal: Compute expectation of:

VoJ®) =E, |R(x)) Vglog mya, | s)

Policy Gradients (6)

 Goal: Compute expectation of:

VoJ®) =E, |R(x)) Vglog mya, | s)

* Can be estimated using Monte Carlo sampling,
which corresponds to rolling out the policy

multiple times to collect N trajectories: 71, 7% ... (V)

Policy Gradients (6)

 Goal: Compute expectation of:

VoJ®) =E, |R(x)) Vglog mya, | s)

* Can be estimated using Monte Carlo sampling,
which corresponds to rolling out the policy
multiple times to collect N trajectories: T(l), 7(2), ees M)

* Qur final estimate of the policy gradient is thus:
N

1 n n
VHJ(H) ~ N Z R(T()) Z Vylog ”0(%() | St())

n=1

Policy Gradients (7)

1. Initialize © arbitrarily
2. Repeat
1. Collect N trajectories 7
2. Estimate gradient:
R \
g — — Z R(z™) Z Volog my(a™ | s™)
t

D) 7@)

N

n=1
3. Update parameters:

0 —0+ag

Proximal Policy Optimization

e Vanilla policy gradient algorithm simple but has
several shortcomings

* We use Proximal Policy Optimization (PPO) in all
our experiments (Schulman et al., 2017)

 Underlaying idea is exactly the same but uses
e Baselines for variance reduction with
generalized advantage estimation

* Importance sampling to use slightly off-policy
data

e Clipping to improve stability

Reward Function

o« Ky=d,—dy,,
where dt and di+1 denote the rotation angle

between the desired and current orientation
before and after the transition

 On success: +5

e Ondrop:-20

Policy Architecture

ot pose. ﬁ :
—>
object pose -

Distributed Training with Rapid

[wonar ot

6,000 CPU cores 8 GPUs

SIMULATION ENVIRONMENT REAL-WORLD ENVIRONMENT

Transfer

SIMULATION ENVIRONMENT REAL-WORLD ENVIRONMENT

Domain Randomization

Domain Randomization (1)

Sadeghi & Levine (2017)

Domain Randomization (2)

4.5X SPEED

Tobin et al. (2017)

..‘ .'-\ Y : “~'l|v"
ORI A

\\u-‘t-h
v
\\)

VNS
\ v'-"y':\\" “" . R

‘\':‘\',\.\\ ““. WA N
\\‘“‘ '\"\\ '\\ \\\ b W X

WL,
TR L
\'..‘.\I"\ \,\ ." 2V

Vision Randomizations

Vision Architecture - < _
A

_
~ A N
B N

i - ——
i - —
i - ——
(Camerat Cameaz Camera3

Physics Randomizations (1)

Peng et al. (2018)

Physics Randomizations (2)

object dimensions
object and robot link masses
surface friction coefficients
robot joint damping coefficients
actuator force gains
joint limits

gravity vector

Full System Recap

Train in Simulation

Observed :.,
Robot States Actions

Object Pose

Transfer to the Real World

Fingertip
Locations

Actions

~ Object Pose.

Results

Learned Strategies

FINGER PIVOTING SLIDING FINGER GAITING

Learned Grasps

Quantitative Results

Table 3: The number of successful consecutive rotations in simulation and on the physical robot. All
policies were trained on environments with all randomizations enabled. We performed 100 trials in
simulation and 10 trails per policy on the physical robot. Each trial terminates when the object 1s

dropped, 50 rotations are achieved or a timeout 1s reached. For physical trials, results were taken at
different times on the physical robot.

Simulated task Mean Median Individual trials (sorted)

Block (state) 43.4 +13.8 50
310CcK (state, locked wrist 44, i (U

Block (vision) S0 == TS 99
Octagonal prism (state) 29.0 £ 19.7

Physical task

Block (state) 188 == 1.1 ol); 41.29. 27, 14. 12: 6.4d.4.]
31ock (state, locked wrist 0.4 L ') 459229, 29, 25 1919, 12, ©
Block (vision) 192 == 14.3 40; 28:20..19. 18, 10: 8. 3
Octagonal prism (state) 7.8+ 7.8 20 10 8:8.00:9; 45 3; 24

Quantitative Results

Table 3: The number of successful consecutive rotations in simulation and on the physical robot. All
policies were trained on environments with all randomizations enabled. We performed 100 trials in
simulation and 10 trails per policy on the physical robot. Each trial terminates when the object 1s

dropped, 50 rotations are achieved or a timeout 1s reached. For physical trials, results were taken at
different times on the physical robot.

Simulated task Mean

Block (state) 43.4 + 13.8
Block locked wrist) 44.2 + 13.4
Block (vision) S0zl == 108
Uctagonal prism

Physical task

Block (state) 18:8 = 1 7.1
Block (state, locked wrist) 26.4 +13.4
Block (vision) 19:2 =& 14.9
Octagonal prism (state

Median Individual trials (sorted)

00 -
50 -
33

13 50, 41, 29, 27, 14, 12,6, 4, 4, 1
28.9 00, 43. 32. 29. 29. 28.19. 13. 12. 9
11.5 46, 28, 20, 19, 13, 10, 8, 3, 2, 1

b

Quantitative Results

Table 3: The number of successful consecutive rotations in simulation and on the physical robot. All
policies were trained on environments with all randomizations enabled. We performed 100 trials in
simulation and 10 trails per policy on the physical robot. Each trial terminates when the object 1s

dropped, 50 rotations are achieved or a timeout 1s reached. For physical trials, results were taken at
different times on the physical robot.

Simulated task Mean Median Individual trials (sorted)

Block (state) 43.4 +13.8 50
state, locked wrist
V1S10N
Octagonal prism (state) 29.0 £ 19.7
Physical task

Block (state) 188 == 1.1 ol); 41.29. 27, 14. 12: 6.4d.4.]
Block (state, locked wrist) 26.4 +13.4 Ot 4332 29; 29; 28, 19:19; 12; 9
Block (vision 192 == 14.3 46, 28.26.19. 13: 10: 8. 3. 2. 1
Octagonal prism (state) 7.8+ 7.8 20 10 8:8.00:9; 45 3; 24

Ablation of Randomizations

Table 4: The number of successtul consecutive rotations on the physical robot of 5 policies trained
separately 1in environments with different randomizations held out. The first 5 rows use PhaseSpace
for object pose estimation and were run on the same robot at the same time. Trials for each row were
interleaved 1n case the state of the robot changed during the trials. The last two rows were measured
at a different time from the first 5 and used the vision model to estimate the object pose.

Training environment Mean Median Individual trials (sorted)

All randomizations (state) 18.8+17.1 50, 41, 29, 27, 14, 12, 6,4, 4, 1
No randomizations (state) 0,2,2,1,0,0,0,0,0,0

No observation noise (state) 19 = 14.5 , 49, 99; 29; 11,9: 8,7, 0, 0, 1
No physics randomizations (state) 3.5 £ 2.5 e s 8 22 20D 1

No unmodeled effects (state) DD 4.8 16,7 35 95 Ziidials 170, U

All randomizations (vision) 192 145 ; 46. 25 206; 1913 10. 8. 3. 2.1
No observation noise (vision) 9.9 0.0 : 20 12, Ll 6.09.2. 2 L, U; 0

Training Time

ol

p=
0
-
=
C
O
<
»
©
O
O
o
=
=
-
O
@
%
C
O
QO

10
Years of Experience

® All Randomizations No Randomizations

Effect of Memory

Table 5: The number of successful consecutive rotations on the physical robot of 3 policies with
different network architectures trained on an environment with all randomizations. Results for each
row were collected at different times on the physical robot.

Network architecture Mean Median Individual trials (sorted)

LSTM policy / LSTM value (state) 18.8+17.1 13 00 41,29. 27, 14, 12.6.4.4, 1
FF policy / LSTM value (state) 4.7+ 4.1 3.9 15, 4,654, 3, 3, 2,20
FF policy / FF value (state) 4.6 £4.3 3 15,8,6,9,3,3,2,2,2,0

Surprises

e Tactile sensingis not necessary to manipulate
real-world objects

e Randomizations developed for one object
generalize to others with similar properties

 With physical robots, good systems engineering
IS as important as good algorithms

Challenges Ahead

e Less manual tuning in domain randomization
* Make use of demonstrations

e Fasterlearningin real world

Blog Post Pre-print

Learning Dexterous In-Hand Manipulation

OpenAl®

Figure 1. A five-fing &
from an metal combgurmian 10 a geal conbgardion ysmg vision fo

Abstract

Dexwerous Hand. The e
fze wiany of the phvsics] propenties of the systea like cnls
up abject’s gppesrancy. Our polwics trunsier 1o the physice. robat despie
«d entirely in amdation. Our method dees rot mely an many humen
! s fow nd o hoean s aipolation emerge nancally,
i ng, mula-fiager soordmutcn, s e somtrolbed use of gravity
Our resullx were oblainad using the xame dsoibated RL system that was used to
wain OpenAl Five [43] We also include a video of cur resuls: suvpe -/ fyoat
be) JWSHENHGE 1N

1 Imtroduction

Whade dexteroos manspolation af objects s a fundamenta. cveryday w3k for humans, it is still
nging far 2uto0omons rabats e ay rohoes are rypically dasipned far specific tasks
Argiced setings cod are lagely vnable w utilice complen e effectors, [conlmast, people
¢ o perlorm o welde zage of Jextoroos nsenpuwlabion Lesks o g deverse sol ol covaronmends,

makinp the human hand a grourdac soarce of insp m for research inio rahatic maaipulation.

Liwe Stdorr Daxlerows Hand 58] s an eample ol @ o ¢ hand designed or bueien - level dexlenty;
1t has 1ve nngers with & tolal of 24 deprees o freccom, Ihe kaad hes been commersialy avarabx
B0 by a reaen of rescarchors iod enginesss i OpenAl (in alphabetiesl order)

Marcin Asdryehewtez Bowendaker Macixk Choce! Raml Jaclowizz Bob MeGrew Jakad Pashect
A Feoren Moo Pappent Gleea Powel AlexHuv Joms Soxeder Saovmoe Sxor Josh Lobm
Peter Wekoder Lilian Weng Wojciech Zarseba

https://blog.openai.com/learning-dexterity/ https://arxiv.org/pdf/1808.00177.pdf

https://arxiv.org/pdf/1808.00177.pdf
https://blog.openai.com/learning-dexterity/

FOLLOW @OPENAI ON TWITTER

http://openai.com

References

e Levine et al. "Learning hand-eye coordination for robotic grasping with deep
earning and large-scale data collection." The International Journal of
Robotics Research37.4-5 (2018): 421-436.

e Peng et al. "Sim-to-real transfer of robotic control with dynamics

randomization." arXiv preprint arXiv:1710.06537 (2017).

e Tobin et al. "Domain randomization for transferring deep neural networks from
simulation to the real world." Intelligent Robots and Systems (IROS), 2017
TEEE/RSJ International Conference on. IEEE, 2017.

e Rajeswaran et al. "Learning complex dexterous manipulation with deep
reinforcement learning and demonstrations." arXiv preprint arXiv:

170910087 (2017).

e Kumar, Vikash, Emanuel Todorov, and Sergey Levine. "Optimal control with

earned local models: Application to dexterous manipulation." Robotics and
Automation (ICRA), 2016 IEEE International Conference on. IEEE, 2016.

e Schulman et al. "Proximal policy optimization algorithms." arXiv preprint arXiv:
1707.06347 (2017).

e Sadeghi & Levine. "CADZ2RL: Real single-image flight without a single real
image." arXiv preprint arXiv:1611.04201 (2016).

