
Learning Dexterity
Matthias Plappert

SEPTEMBER 6, 2018

“OpenAI is a non-profit AI research company,

discovering and enacting the path to safe 

artificial general intelligence.”

OpenAI

“OpenAI is a non-profit AI research company,

discovering and enacting the path to safe 

artificial general intelligence.”

OpenAI

“OpenAI is a non-profit AI research company,

discovering and enacting the path to safe 

artificial general intelligence.”

OpenAI

“OpenAI is a non-profit AI research company,

discovering and enacting the path to safe  

artificial general intelligence.”

OpenAI

• Broadly Distributed Benefits

• Long-Term Safety

• Technical Leadership

• Cooperative Orientation 

• Full text available on our blog: 

https://blog.openai.com/openai-charter/

OpenAI Charter

https://blog.openai.com/openai-charter/

Learning Dexterity

GO (ALPHAGO ZERO) DOTA 2 (OPENAI FIVE)

Reinforcement Learning

Reinforcement Learning for Robotics (1)

Rajeswaran et al. (2017)

Reinforcement Learning for Robotics (2)

Kumar et al. (2016)

Reinforcement Learning for Robotics (3)

Levine et al. (2018)

Simulated environment

for trainingSimulated environment

for trainingSimulated environment

for training Real robot hardwareTransfer

Sim2Real

Simulated environments

for training

Transfer

Transfer

Task & Setup

Shadow Dexterous Hand

PhaseSpace tracking

Top RGB camera

Left RGB cameraRight RGB camera

• Reinforcement learning for the real world  

• High-dimensional control 

• Noisy and partial observations  

• Manipulating more than one object

Challenges

Reinforcement Learning

+

Domain Randomization

Reinforcement Learning

EnvironmentAgent

Action at

State st+1 and reward rt

Reinforcement Learning (1)

Reinforcement Learning (2)

• Formalize as Markov decision process

ℳ = (", #, $, ρ, r)

Reinforcement Learning (2)

• Formalize as Markov decision process

ℳ = (", #, $, ρ, r)

Set of states

Reinforcement Learning (2)

• Formalize as Markov decision process

ℳ = (", #, $, ρ, r)

Set of states

Set of actions

Reinforcement Learning (2)

• Formalize as Markov decision process

ℳ = (", #, $, ρ, r)

Set of states

Set of actions

Transition probabilities: st+1 ∼ $(⋅ ∣ , st, at)

Reinforcement Learning (2)

• Formalize as Markov decision process

ℳ = (", #, $, ρ, r)

Set of states

Set of actions

Transition probabilities: st+1 ∼ $(⋅ ∣ , st, at)

Initial state distribution: s0 ∼ ρ(⋅)

Reinforcement Learning (2)

• Formalize as Markov decision process

ℳ = (", #, $, ρ, r)

Set of states

Set of actions

Transition probabilities: st+1 ∼ $(⋅ ∣ , st, at)

Initial state distribution: s0 ∼ ρ(⋅)

Reward function: r : " × #

Reinforcement Learning (2)

• Formalize as Markov decision process

• Agent uses a policy to select actions:

at ∼ π(⋅ ∣ st)

ℳ = (", #, $, ρ, r)

Set of states

Set of actions

Transition probabilities: st+1 ∼ $(⋅ ∣ , st, at)

Initial state distribution: s0 ∼ ρ(⋅)

Reward function: r : " × #

Reinforcement Learning (3)

• Let τ denote a trajectory with   s0 ∼ ρ(⋅), at ∼ π(⋅ ∣ st), st+1 ∼ $(⋅ ∣ st, at)

Reinforcement Learning (3)

• Let τ denote a trajectory with  

• The discounted return is then defined as:  

 

 

s0 ∼ ρ(⋅), at ∼ π(⋅ ∣ st), st+1 ∼ $(⋅ ∣ st, at)

R(τ) := ∑
t

γ
tr(st, at) γ ∈ [0,1)

Reinforcement Learning (3)

• Let τ denote a trajectory with  

• The discounted return is then defined as:  

 

 

 

• We wish to find a policy that maximizes the

expected discounted return:

s0 ∼ ρ(⋅), at ∼ π(⋅ ∣ st), st+1 ∼ $(⋅ ∣ st, at)

R(τ) := ∑
t

γ
tr(st, at) γ ∈ [0,1)

π* := arg max
π

*
τ [R(τ)]

Reinforcement Learning (4)

• Depending on the assumptions, many methods

exist to find optimal policies. Examples are:

• Dynamic programming

• Policy gradient methods

• Q learning 

• This talk will focus on policy gradient methods 

• Policy gradients are model-free, i.e. we do not

know the transition distribution

Policy Gradients (1)

• Let’s assume a parameterized policy πθ, where θ

is some parameter vector 

 

Policy Gradients (1)

• Let’s assume a parameterized policy πθ, where θ

is some parameter vector 

• Our optimization objective then is:  

 

 

  J(θ) := *
τ [R(τ)]

Policy Gradients (1)

• Let’s assume a parameterized policy πθ, where θ

is some parameter vector 

• Our optimization objective then is:  

 

 

  J(θ) := *
τ [R(τ)]

has a dependency on θ through τ

has no dependency on θ

Policy Gradients (1)

• Let’s assume a parameterized policy πθ, where θ

is some parameter vector 

• Our optimization objective then is:  

 

 

 

 

 

• Simple idea: Let’s compute the gradient w.r.t. θ

and do gradient ascent

J(θ) := *
τ [R(τ)]

has a dependency on θ through τ

has no dependency on θ

Policy Gradients (2)

• Goal: Compute the gradient  

 

 

 

 

∇θJ(θ) = ∇θ*
τ [R(τ)]

Policy Gradients (2)

• Goal: Compute the gradient  

• Expanding the expectation and rearranging we

get:  

 

 

 

 

 

∇θJ(θ) = ∇θ*
τ [R(τ)]

∇θJ(θ) = ∇θ[∫ R(τ)p(τ)dτ]

Policy Gradients (2)

• Goal: Compute the gradient  

• Expanding the expectation and rearranging we

get:  

 

 

 

 

 

∇θJ(θ) = ∇θ*
τ [R(τ)]

= ∫ R(τ)∇θ p(τ)dτ

∇θJ(θ) = ∇θ[∫ R(τ)p(τ)dτ]

Policy Gradients (3)

• Goal: Compute  

 

 

∇θJ(θ) = ∫ R(τ)∇θ p(τ)dτ

Policy Gradients (3)

• Goal: Compute  

 

 

∇θJ(θ) = ∫ R(τ)∇θ p(τ)dτ

Policy Gradients (3)

• Goal: Compute

• Use the "log derivative trick":  

 

  ∇θlog p(τ) =
1

p(τ)
∇θ p(τ) ⟺ ∇θ p(τ) = ∇θlog p(τ)p(τ)

∇θJ(θ) = ∫ R(τ)∇θ p(τ)dτ

Policy Gradients (3)

• Goal: Compute

• Use the "log derivative trick":  

 

 

 

• ... and plug back in to obtain:

∇θlog p(τ) =
1

p(τ)
∇θ p(τ) ⟺ ∇θ p(τ) = ∇θlog p(τ)p(τ)

∇θJ(θ) = ∫ R(τ)∇θ p(τ)dτ

∇θJ(θ) = ∫ R(τ)∇θlog p(τ)p(τ)dτ

Policy Gradients (3)

• Goal: Compute

• Use the "log derivative trick":  

 

 

 

• ... and plug back in to obtain:

∇θlog p(τ) =
1

p(τ)
∇θ p(τ) ⟺ ∇θ p(τ) = ∇θlog p(τ)p(τ)

∇θJ(θ) = ∫ R(τ)∇θ p(τ)dτ

∇θJ(θ) = ∫ R(τ)∇θlog p(τ)p(τ)dτ

= *
τ [R(τ)∇θlog p(τ)]

Policy Gradients (4)

• Goal: Compute  

 

 

∇θlog p(τ)

Policy Gradients (4)

• Goal: Compute  

• Probability of a trajectory τ is:  

 

 
p(τ) = ρ(s0)∏

t

$(st+1 ∣ st, at)πθ(at ∣ st)

∇θlog p(τ)

Policy Gradients (4)

• Goal: Compute  

• Probability of a trajectory τ is:  

 

 
p(τ) = ρ(s0)∏

t

$(st+1 ∣ st, at)πθ(at ∣ st)

log p(τ) = log ρ(s0) + ∑
t

log $(st+1 ∣ st, at) + log πθ(at ∣ st)

∇θlog p(τ)

Policy Gradients (4)

• Goal: Compute  

• Probability of a trajectory τ is:  

 

 

 

• Taking the gradient:

p(τ) = ρ(s0)∏
t

$(st+1 ∣ st, at)πθ(at ∣ st)

log p(τ) = log ρ(s0) + ∑
t

log $(st+1 ∣ st, at) + log πθ(at ∣ st)

∇θlog p(τ) = ∑
t

∇θlog πθ(at ∣ st)

∇θlog p(τ)

Policy Gradients (5)

• Putting it all together: 

 

 

 

 

 

 

 

 

 

∇θJ(θ) = ∇θ*
τ [R(τ)]

Policy Gradients (5)

• Putting it all together: 

 

 

 

 

 

 

 

 

 

∇θJ(θ) = ∇θ*
τ [R(τ)]

= ∫ R(τ)∇θ p(τ)dτ

Policy Gradients (5)

• Putting it all together: 

 

 

 

 

 

 

 

 

 

∇θJ(θ) = ∇θ*
τ [R(τ)]

= ∫ R(τ)∇θ p(τ)dτ

= *
τ [R(τ)∇θlog p(τ)]

Policy Gradients (5)

• Putting it all together: 

 

 

 

 

 

 

 

 

 

∇θJ(θ) = ∇θ*
τ [R(τ)]

= *
τ [R(τ)∑

t

∇θlog πθ(at ∣ st)]

= ∫ R(τ)∇θ p(τ)dτ

= *
τ [R(τ)∇θlog p(τ)]

Policy Gradients (5)

• Putting it all together: 

 

 

 

 

 

 

 

 

 

 

• Last missing piece: Computing the expectation

∇θJ(θ) = ∇θ*
τ [R(τ)]

= *
τ [R(τ)∑

t

∇θlog πθ(at ∣ st)]

= ∫ R(τ)∇θ p(τ)dτ

= *
τ [R(τ)∇θlog p(τ)]

Policy Gradients (6)

• Goal: Compute expectation of:  

 

  ∇θJ(θ) = *
τ [R(τ)∑

t

∇θlog πθ(at ∣ st)]

Policy Gradients (6)

• Goal: Compute expectation of:  

 

 

 

• Can be estimated using Monte Carlo sampling,

which corresponds to rolling out the policy

multiple times to collect N trajectories:

∇θJ(θ) = *
τ [R(τ)∑

t

∇θlog πθ(at ∣ st)]

τ
(1), τ

(2), …, τ
(N)

Policy Gradients (6)

• Goal: Compute expectation of:  

 

 

 

• Can be estimated using Monte Carlo sampling,

which corresponds to rolling out the policy

multiple times to collect N trajectories: 

• Our final estimate of the policy gradient is thus:

∇θJ(θ) = *
τ [R(τ)∑

t

∇θlog πθ(at ∣ st)]

τ
(1), τ

(2), …, τ
(N)

∇θJ(θ) ≈
1

N

N

∑
n=1

[R(τ(n))∑
t

∇θlog πθ(a
(n)
t

∣ s
(n)
t

)]

Policy Gradients (7)

1. Initialize θ arbitrarily

2. Repeat

1. Collect N trajectories

2. Estimate gradient:  

 

 

3. Update parameters:  

τ
(1), τ

(2), …, τ
(N)

̂g ←
1

N

N

∑
n=1

[R(τ(n))∑
t

∇θlog πθ(a
(n)
t

∣ s
(n)
t

)]
θ ← θ + α ̂g

Proximal Policy Optimization

• Vanilla policy gradient algorithm simple but has

several shortcomings 

• We use Proximal Policy Optimization (PPO) in all

our experiments (Schulman et al., 2017)  

• Underlaying idea is exactly the same but uses

• Baselines for variance reduction with

generalized advantage estimation

• Importance sampling to use slightly off-policy

data

• Clipping to improve stability

Reward Function

• ,  

where dt and dt+1 denote the rotation angle

between the desired and current orientation

before and after the transition 

• On success: +5 

• On drop: -20

rt = dt − dt+1

Action Distribution finger joint positions

LSTM

Fully-connected ReLU

Normalization

Noisy Observation Goal
fingertip positions

object pose

Policy Architecture

Optimizer
Worker

Parameters

WorkerWorkerWorker

8 GPUs6,000 CPU cores

Distributed Training with Rapid

Transfer

Transfer

Domain Randomization

Sadeghi & Levine (2017)

Domain Randomization (1)

Tobin et al. (2017)

Domain Randomization (2)

Vision Randomizations

Concat

ReLU

Conv

Camera 1

Pool

ResNet

SSM

Conv

Camera 2

Pool

ResNet

SSM

Conv

Camera 3

Pool

ResNet

SSM

Object Position

Object Rotation

Vision Architecture

Peng et al. (2018)

Physics Randomizations (1)

object dimensions

object and robot link masses

surface friction coefficients

robot joint damping coefficients

actuator force gains

joint limits

gravity vector

Physics Randomizations (2)

Full System Recap

Results

Page Title

Learned Strategies

Tip Palmar Tripo

Quadpo Power 5-finger Precision

Learned Grasps

Quantitative Results

Quantitative Results

Quantitative Results

Ablation of Randomizations

Training Time

Effect of Memory

Surprises

• Tactile sensing is not necessary to manipulate

real-world objects 

• Randomizations developed for one object

generalize to others with similar properties  

• With physical robots, good systems engineering

is as important as good algorithms

Challenges Ahead

• Less manual tuning in domain randomization

• Make use of demonstrations

• Faster learning in real world

Blog Post

https://arxiv.org/pdf/1808.00177.pdfhttps://blog.openai.com/learning-dexterity/

Pre-print

https://arxiv.org/pdf/1808.00177.pdf
https://blog.openai.com/learning-dexterity/

Thank You
Visit openai.com for more information.

FOLLOW @OPENAI ON TWITTER

http://openai.com

References

• Levine et al. "Learning hand-eye coordination for robotic grasping with deep

learning and large-scale data collection." The International Journal of

Robotics Research37.4-5 (2018): 421-436.

• Peng et al. "Sim-to-real transfer of robotic control with dynamics

randomization." arXiv preprint arXiv:1710.06537 (2017).

• Tobin et al. "Domain randomization for transferring deep neural networks from

simulation to the real world." Intelligent Robots and Systems (IROS), 2017

IEEE/RSJ International Conference on. IEEE, 2017.

• Rajeswaran et al. "Learning complex dexterous manipulation with deep

reinforcement learning and demonstrations." arXiv preprint arXiv:

1709.10087 (2017).

• Kumar, Vikash, Emanuel Todorov, and Sergey Levine. "Optimal control with

learned local models: Application to dexterous manipulation." Robotics and

Automation (ICRA), 2016 IEEE International Conference on. IEEE, 2016.

• Schulman et al. "Proximal policy optimization algorithms." arXiv preprint arXiv:

1707.06347 (2017).

• Sadeghi & Levine. "CAD2RL: Real single-image flight without a single real

image." arXiv preprint arXiv:1611.04201 (2016).

