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• Realistic robot environments 
 
 
 
 

• Integrated with OpenAI Gym  

• Goal-based formulation 

• Sparse rewards

Robotics Release – Environments



• Learning from failed attempts 
 
 
 
 
 
 
 

• Can be combined with any off-policy RL 
algorithm 

• Allows us to solve sparse tasks

Robotics Release – Hindsight Experience Replay



Robotics Release – Request for Research
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Robotics Release – Further Reading

• Blog post 
https://blog.openai.com/ingredients-for-
robotics-research/  

• "Hindsight Experience Replay", Andrychowicz 
et al., 2017 

• "Multi-Goal Reinforcement Learning: 
Challenging Robotics Environments and 
Request for Research", Plappert et al., 2018

https://blog.openai.com/ingredients-for-robotics-research/
https://blog.openai.com/ingredients-for-robotics-research/


Robotics – Robots that Learn

• "One-Shot Imitation Learning", Duan et al., 
2017 

• "Domain Randomization for Transferring Deep 
Neural Networks from Simulation to the Real 
World", Tobin et al., 2017



Robotics – Generalizing from Simulation

• "Sim-to-Real Transfer of Robotic Control with 
Dynamics Randomization", Peng et al., 2017 

• "Asymmetric Actor Critic for Image-Based 
Robot Learning", Pinto et al., 2017
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A Brief Introduction to Reinforcement Learning
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Reinforcement Learning (1)

Agent Environment

Action !"

State #"$% and Reward &" ≔ ((#", !")
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Reinforcement Learning (2)

Formalize as Markov decision process ℳ = ($,&,', ρ, )) with
Set of states $
Set of actions&
Reward function r: $ × & → ℝ
Initial state distribution 01 ~ ρ(3)
State transition distribution: 0456 ~ ' 3 04, 74)

Agent uses a policy to select actions:
74 ~ 8 3 04)
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Reinforcement Learning (3)

Let ! denote a trajectory with "#~ ρ('), *+ ~ , ' | "+ , "+./~0 ' | "+, *+

The discounted return is then defined as:

R ! ≔3
+
4+5 "+, *+ , with 4 ∈ [0, 1)

We wish to find a policy ,∗ that maximizes the expected discounted return:
,∗ ≔ argmaxDEF G(!)

Also notice that we have to discover states with high rewards since we 
assume no a-priori information about our environment
→ requires exploration
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Policy Gradients (1)

Let’s assume a parameterized policy !", where " is some parameter vector

Rewrite our optimization objective as:

J " = %& '()) ,

where %& has a dependency on " through ,- ~!" / | 1- but, importantly, 
'()) has no dependence on " (it simply computes the return of any given 
trajectory)

Simple idea: Let’s compute the gradient and do gradient ascent on this 
objective!
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Policy Gradients (2)

We can expand the expectation as follows:

∇"J " = ∇"%& '())
= ∫' ) ∇",())d)

Furthermore, we can use the log derivative trick:

∇" log , ) = 1
, ) ∇", )

∇", ) = ∇" log , ) , )

Plugging this back in, we obtain:
∇"J " = ∫'()) ∇" log , ) , )

= %&['())∇" log , ) ]
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Policy Gradients (3)

So we just have to worry about computing ∇" log & ' !

& ' = ρ *+ ∏- . *-/0 *-, 2-) 4 2- *-)

Taking the log:
log & ' = log ρ *+ + ∑- log. *-/0 *-, 2-) + log 4" 2- *-)

Only 4 has a dependence on ", thus we obtain:
∇" log & ' = 7

-
∇" log 4" 2- *-)

∇"J " = 9: ; ' ∇" log & '
= 9: ; ' ∑- ∇" log 4" 2- *-)
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Policy Gradients (4)

The expectation can be estimated using Monte Carlo sampling, which 
corresponds to rolling out the policy multiple times to collect N trajectories: 
!(#), ! & , … , !(()

The estimate for the policy gradient is thus:

)* = 1
-./

0 !(/) .
1
∇3 log 73 81(/) 91/ )
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Q-learning (1)

Policy gradients work but …
gradient estimates have large variance
throw away all data after every policy update

Introduce the state-action value function !" #, %

Informally, !" #, % gives us the expected discounted return if we take action 
a in state s and follow & afterwards

Define '" as the Bellman operator:
('"!) #, % = + ,, - + / 0" ! #1, %1

'" is a contraction and applying it iteratively convergences to the fixed point 
!" #, % , for any given initial Q! (Banach fixed-point theorem)
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Q-learning (2)

Assuming we have the optimal !∗, the optimal policy is given by #∗:
#∗ % = argmax,!∗ -, ,

Conversely, /∗ has the same properties as /0 and we can therefore compute 
!∗ by iteratively applying:

(/∗!) -, , = 3 4, 5 + 7 80∗ ! -9, ,9
= 3 4, 5 + 7 argmax,9!∗ -′, ,′

Still need to explore in order to “see” entire state space

Tabular case breaks down as both state and action space become large
→ approximate Q, e.g. using neural networks
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Deep Q-Networks

DQN, Mnih et al., 2013 & 2015

Parameterize Q-function using a deep neural network and learn:
!" #, % = ' #, % + ) max%-!" #-, %-

i.e. it uses Q-learning

Policy is defined implicitly: . # ≔ argmax%- !" #, %′

Works with discrete action spaces

Typically uses 3-greedy exploration:
With probability 3, select a random action

Otherwise, select . #

No formal convergence guarantees anymore due to approximate nature
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Deep Deterministic Policy Gradient

DDPG, Lillicrap et al., 2015

What if we want to use DQN but have a continuous action space?

DDPG uses actor-critic architecture with two networks:
!" #, % = ' #, % + ) !" #*, +,(#* )
+, # = arg max4,5 !" 6, +,* #

Typically uses additive Gaussian exploration:
7+ # ≔ +, # +9(:, ;<=)
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Further Reading

“Reinforcement Learning: An Introduction”, Barto and Sutton, 

http://incompleteideas.net/book/the-book-2nd.html

“Deep Reinforcement Learning”, Levine, 

http://rll.berkeley.edu/deeprlcourse/

Selected deep RL papers

DQN: https://www.nature.com/articles/nature14236

DDPG: https://arxiv.org/abs/1509.02971

TRPO: https://arxiv.org/abs/1502.05477

PPO: https://arxiv.org/abs/1707.06347

http://incompleteideas.net/book/the-book-2nd.html
http://rll.berkeley.edu/deeprlcourse/
https://www.nature.com/articles/nature14236
https://arxiv.org/abs/1509.02971
https://arxiv.org/abs/1502.05477
https://arxiv.org/abs/1707.06347
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Parameter Space Noise for Exploration
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Motivation

Typically, exploration is realized in the action space:
!" # ≔ "% # +' (, *+,

However, this leads to inconsistent exploration since the noise is not 
conditioned on the state
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Formulation

What if we apply noise to the parameters of the policy instead?

Define !" # ≔ "%& # with %& ≔ & +((*, ,-.)
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Problems

Recall that !" ≔ " +% &, ()*

We use a scalar ( to perturb the weights of a deep network (Problem 1)
Such a network will likely have many layers
Each layer likely has different sensitivities to noise

We have to pick a suitable scalar ( (Problem 2)
In action space noise, the effect is intuitively understandable
In contrast, what does perturbing the weights of the policy mean?
Furthermore, the sensitivity of the policy to perturbations is likely changing as 
training progresses
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Problem 1

Use a similar re-parameterization as proposed in Salimans et al., 2017

We use layer normalization (Ba et al., 2016)

! = # $
% ⊙ ' − ) + +

with ' = ,- and ) and % are estimated over '

h ends up with approximately zero mean and unit variance

Perturbation to , becomes invariant to sensitivity of that layer

Hinges on assumption that units within layer are similar
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Problem 2

Reasoning about ! in parameter space is hard

Idea: Think about the effect of a perturbation in action space:
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Problem 2

Reasoning about ! in parameter space is hard

Idea: Think about the effect of a perturbation in action space:

"# ≔ %& " ' ( & , *' ( &))

using some distance / divergence measure " (,(

Adaptively change !:

!#,- = /
0!#, "# ≤ 2
1
0 !#, otherwise
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Experiments (1)

We test for exploration on a simple but scalable toy environment

Experiments on DQN with different exploration methods
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Experiments (2)

Evaluation on 20 Atari games

DQN with different exploration methods

Exploration behavior of !-greedy (left) vs. parameter space noise (right)
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Experiments (3)
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Experiments (4)

Evaluation on 7 MuJoCo continuous control problems

DDPG with different exploration methods

Exploration of additive Gaussian noise (left) vs. parameter space noise (right)
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Experiments (5)
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Experiments (6)

Combine parameter space noise with Hindsight Experience Replay (HER)

Evaluate on 3 robotics tasks with sparse rewards
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Experiments (7)
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Related Work

Concurrently to our work, DeepMind has proposed “Noisy Networks for 
Exploration”, Fortunato et al., 2017

“Deep Exploration via Bootstrapped DQN”, Osband et al., 2016

“Evolution strategies as a scalable alternative to reinforcement learning”, 
Salimans et al., 2017

“State-dependent exploration for policy gradient methods”, Rückstieß et al., 
2008

And a lot of other papers on the general topic of exploration in RL
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Conclusion

Conceptually simple and designed as a drop-in replacement for action space 
noise (or as an addition)

Often leads to better performance due to better exploration

Especially helps when exploration is really important (i.e. sparse rewards)

Seems to escape local optima (e.g. HalfCheetah)

Works for off- and on-policy algorithms for discrete and continuous action 
spaces
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Future Directions

More sophisticated adaption mechanisms

Learned perturbations

Combinations of action and parameter space noise
Both simulatenously
Switching between action and parameter noise

Combination with Bayesian Neural Networks
Noise proportional to parameter uncertainty?
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Collaborators

Rein Houthooft OpenAI
Prafulla Dhariwal OpenAI
Szymon Sidor OpenAI
Richard Y. Chen OpenAI
Xi Chen UC Berkeley / Embodied Intelligence
Tamim Asfour KIT
Pieter Abbeel UC Berkeley / Embodied Intelligence
Marcin Andrychowicz OpenAI
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Future Reading

“Parameter Space Noise for Exploration in Deep Reinforcement Learning“, 
Plappert, Master thesis, 2017, available online at matthiasplappert.com

“Parameter Space Noise for Exploration“, Plappert et al., International 
Conference on Learning Representations, Vancouver, 2018
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Thank you for your attention!

Learn more about OpenAI:
https://openai.com & https://blog.openai.com/

We’re also hiring!
https://openai.com/jobs/

https://openai.com/
https://blog.openai.com/
https://openai.com/jobs/

