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ABSTRACT

We train a single, goal-conditioned policy that can solve many robotic manipula-
tion tasks, including tasks with previously unseen goals and objects. We rely on
asymmetric self-play for goal discovery, where two agents, Alice and Bob, play a
game. Alice is asked to propose challenging goals and Bob aims to solve them. We
show that this method can discover highly diverse and complex goals without any
human priors. Bob can be trained with only sparse rewards, because the interac-
tion between Alice and Bob results in a natural curriculum and Bob can learn from
Alice’s trajectory when relabeled as a goal-conditioned demonstration. Finally,
our method scales, resulting in a single policy that can generalize to many unseen
tasks such as setting a table, stacking blocks, and solving simple puzzles. Videos
of a learned policy is available at https://robotics-self-play.github.io.

1 INTRODUCTION

We are motivated to train a single goal-conditioned policy (Kaelbling, 1993) that can solve any
robotic manipulation task that a human may request in a given environment. In this work, we make
progress towards this goal by solving a robotic manipulation problem in a table-top setting where
the robot’s task is to change the initial configuration of a variable number of objects on a table to
match a given goal configuration. This problem is simple in its formulation but likely to challenge a
wide variety of cognitive abilities of a robot as objects become diverse and goals become complex.

Motivated by the recent success of deep reinforcement learning for robotics (Levine et al., 2016;
Gu et al., 2017; Hwangbo et al., 2019; OpenAI et al., 2019a), we tackle this problem using deep
reinforcement learning on a very large training distribution. An open question in this approach
is how we can build a training distribution rich enough to achieve generalization to many unseen
manipulation tasks. This involves defining both an environment’s initial state distribution and a
goal distribution. The initial state distribution determines how we sample a set of objects and their
configuration at the beginning of an episode, and the goal distribution defines how we sample target
states given an initial state. In this work, we focus on a scalable way to define a rich goal distribution.

∗Authors are listed at random and a detailed contribution section is at the end. Please cite as OpenAI et al..

(a) Table-top setting with a robot arm (b) Example initial state for training (c) Example holdout tasks

Figure 1: (a) We train a policy that controls a robot arm operating in a table-top setting. (b) Ran-
domly placed ShapeNet (Chang et al., 2015) objects constitute an initial state distribution for train-
ing. (c) We use multiple manually designed holdout tasks to evaluate the learned policy.
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(a) Overall framework
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(b) Training distribution based on asymmetric self-play

Figure 2: (a) We train a goal-conditioned policy on a single training distribution and evaluate its
performance on many unseen holdout tasks. (b) To construct a training distribution, we sample an
initial state from a predefined distribution, and run a goal setting policy (Alice) to generate a goal.
In one episode, Alice is asked to generate 5 goals and Bob solves them in sequence until it fails.

The research community has started to explore automated ways of defining goal distributions. For
example, previous works have explored learning a generative model of goal distributions (Florensa
et al., 2018; Nair et al., 2018b; Racaniere et al., 2020) and collecting teleoperated robot trajectories
to identify goals (Lynch et al., 2020; Gupta et al., 2020). In this paper, we extend an alternative
approach called asymmetric self-play (Sukhbaatar et al., 2018b;a) for automated goal generation.
Asymmetric self-play trains two RL agents named Alice and Bob. Alice learns to propose goals that
Bob is likely to fail at, and Bob, a goal-conditioned policy, learns to solve the proposed goals. Alice
proposes a goal by manipulating objects and Bob has to solve the goal starting from the same initial
state as Alice’s. By embodying these two agents into the same robotic hardware, this setup ensures
that all proposed goals are provided with at least one solution: Alice’s trajectory.

There are two main reasons why we consider asymmetric self-play to be a promising goal generation
and learning method. First, any proposed goal is achievable, meaning that there exists at least one
solution trajectory that Bob can follow to achieve the goal. Because of this property, we can exploit
Alice’s trajectory to provide additional learning signal to Bob via behavioral cloning. This additional
learning signal alleviates the overhead of heuristically designing a curriculum or reward shaping for
learning. Second, this approach does not require labor intensive data collection.

In this paper, we show that asymmetric self-play can be used to train a goal-conditioned policy for
complex object manipulation tasks, and the learned policy can zero-shot generalize to many man-
ually designed holdout tasks, which consist of either previously unseen goals, previously unseen
objects, or both. To the best of our knowledge, this is the first work that presents zero-shot general-
ization to many previously unseen tasks by training purely with asymmetric self-play.1

2 PROBLEM FORMULATION

Our training environment for robotic manipulation consists of a robot arm with a gripper attached
and a wide range of objects placed on a table surface (Figure 1a,1b). The goal-conditioned policy
learns to control the robot to rearrange randomly placed objects (the initial state) into a specified
goal configuration (Figure 1c). We aim to train a policy on a single training distribution and to
evaluate its performance over a suite of holdout tasks which are independently designed and not
explicitly present during training (Figure 2a). In this work, we construct the training distribution via
asymmetric self-play (Figure 2b) to achieve generalization to many unseen holdout tasks (Figure 1c).

Mathematical formulation Formally, we model the interaction between an environment and a
goal-conditioned policy as a goal-augmented Markov decision processM = 〈S,A,P,R,G〉, where
S is the state space, A is the action space, P : S × A × S 7→ R denotes the transition probability,
G ⊆ S specifies the goal space and R : S × G 7→ R is a goal-specific reward function. A goal-
augmented trajectory sequence is {(s0, g, a0, r0), . . . , (st, g, at, rt)}, where the goal is provided to
the policy as part of the observation at every step. We say a goal is achieved if st is sufficiently close
to g (Appendix A.2). With a slightly overloaded notation, we define the goal distribution G(g|s0) as
the probability of a goal state g ∈ G conditioned on an initial state s0 ∈ S.

1Asymmetric self-play is proposed in Sukhbaatar et al. (2018b;a), but to supplement training while the
majority of training is conducted on target tasks. Zero-shot generalization to unseen tasks was not evaluated.
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Training goal distribution A naive design of the goal distribution G(g|s0) is to randomly place
objects uniformly on the table, but it is unlikely to generate interesting goals, such as an object picked
up and held above the table surface by a robot gripper. Another possible approach, collecting tasks
and goals manually, is expensive and hard to scale. We instead sidestep these issues and automati-
cally generate goals via training based on asymmetric self-play (Sukhbaatar et al., 2018b;a). Asym-
metric self-play involves using a policy named Alice πA(a|s) to set goals and a goal-conditioned
policy Bob πB(a|s, g) to solve goals proposed by Alice, as illustrated in Figure 2b. We run πA to
generate a trajectory τA = {(s0, a0, r0), . . . , (sT , aT , rT )} and the last state is labelled as a goal g
for πB to solve. The goal distribution G(sT = g|s0) is fully determined by πA and we train Bob
only on this goal distribution. We therefore say zero-shot generalization when Bob generalizes to a
holdout task which is not explicitly encoded into the training distribution.

Evaluation on holdout tasks To assess zero-shot generalization of πB(a|s, g) from our training
setup, we hand-designed a suite of holdout tasks with goals that are never directly incorporated into
the training distribution. Some holdout tasks also feature previously unseen objects. The holdout
tasks are designed to either test whether a specific skill has been learned, such as the ability to pick
up objects (Figure 3), or represent a semantically interesting task, such as setting a table (Figure 1c).
Appendix B.6 describes the list of holdout tasks that we use in our experiments. Note that none of
the holdout tasks are used for training πB(a|s, g).

3 ASYMMETRIC SELF-PLAY

To train Alice policy πA(a|s) and Bob policy πB(a|s, g), we run the following multi-goal game
within one episode, as illustrated in Figure 2b:

1. An initial state s0 is sampled from an initial state distribution. Alice and Bob are instanti-
ated into their own copies of the environment. Alice and Bob alternate turns as follows.

2. Alice’s turn. Alice interacts with its environment for a fixed number of T steps and may
rearrange the objects. The state at the end of Alice’s turn sT will be used as a goal g for
Bob. If the proposed goal is invalid (e.g. if Alice has not moved any objects, or if an object
has fallen off the table), the episode terminates.

3. Bob’s turn. Bob receives reward if it successfully achieves the goal g in its environment.
Bob’s turn ends when it succeeds at achieving the goal or reaches a timeout. If Bob’s turn
ends in a failure, its remaining turns are skipped and treated as failures, while we let Alice
to keep generating goals.

4. Alice receives reward if Bob fails to solve the goal that Alice proposed. Steps 2–3 are
repeated until 5 goals are set by Alice or Alice proposes an invalid goal, and then the
episode terminates.

The competition created by this game encourages Alice to propose goals that are increasingly chal-
lenging to Bob, while Bob is forced to solve increasingly complex goals. The multi-goal setup
was chosen to allow Bob to take advantage of environmental information discovered earlier in the
episode to solve its remaining goals, which OpenAI et al. (2019a) found to be important for transfer
to physical systems. Note however that in this work we focus on solving goals in simulation only.
To improve stability and avoid forgetting, we have Alice and Bob play against past versions of their
respective opponent in 20% of games. More details about the game structure and pseudocode for
training with asymmetric self-play are available in Appendix A.

3.1 REWARD STRUCTURE

For Bob, we assign sparse goal-conditioned rewards. We measure the positional and rotational dis-
tance between an object and its goal state as the Euclidean distance and the Euler angle rotational
distance, respectively. Whenever both distance metrics are below a small error (the success thresh-
old), this object is deemed to be placed close enough to the goal state and Bob receives 1 reward
immediately. But if this object is moved away from the goal state that it has arrived at in past steps,
Bob obtains -1 reward such that the sum of per-object reward is at most 1 during a given turn. When
all of the objects are in their goal state, Bob receives 5 additional reward and its turn is over.
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For Alice, we assign a reward after Bob has attempted to solve the goal: 5 reward if Bob failed at
solving the goal, and 0 if Bob succeeded. We shape Alice’s reward slightly by adding 1 reward if
it has set a valid goal, defined to be when no object has fallen off the table and any object has been
moved more than the success threshold. An additional penalty of −3 reward is introduced when
Alice sets a goal with objects outside of the placement area, defined to be a fixed 3D volume within
the view of the robot’s camera. More details are discussed in Appendix A.2.

3.2 ALICE BEHAVIORAL CLONING (ABC)

One of the main benefits of using asymmetric self-play is that the generated goals come with at least
one solution to achieve it: Alice’s trajectory. Similarly to Sukhbaatar et al. (2018a), we exploit this
property by training Bob with Behavioral Cloning (BC) from Alice’s trajectory, in addition to the
reinforcement learning (RL) objective. We call this learning mechanism Alice Behavioral Cloning
(ABC). We propose several improvements over the original formulation in Sukhbaatar et al. (2018a).

Demonstration trajectory filtering Compared to BC from expert demonstrations, using Alice’s
trajectory needs extra care. Alice’s trajectory is likely to be suboptimal for solving the goal, as
Alice might arrive at the final state merely by accident. Therefore, we only consider trajectories
with goals that Bob failed to solve as demonstrations, to avoid distracting Bob with suboptimal
examples. Whenever Bob fails, we relabel Alice’s trajectory τA to be a goal-augmented version
τBC = {(s0, sT , a0, r0), . . . , (sT , sT , aT , rT )} as a demonstration for BC, where sT is the goal.

PPO-style BC loss clipping The objective for training Bob is L = LRL + βLabc, where LRL is an
RL objective and Labc is the ABC loss. β is a hyperparameter controlling the relative importance of
the BC loss. We set β = 0.5 throughout the whole experiment. A naive BC loss is to minimize the
negative log-likelihood of demonstrated actions, −E(st,gt,at)∈DBC

[
log πB(at|st, gt; θ)

]
where DBC

is a mini-batch of demonstration data and πB is parameterized by θ. We found that overly-aggressive
policy changes triggered by BC sometimes led to learning instabilities. To prevent the policy from
changing too drastically, we introduce PPO-style loss clipping (Schulman et al., 2017) on the BC
loss by setting the advantage Â = 1 in the clipped surrogate objective:

Labc = −E(st,gt,at)∈DBC

[
clip

( πB(at|st, gt; θ)
πB(at|st, gt; θold)

, 1− ε, 1 + ε
)]

where πB(at|st, gt; θ) is Bob’s likelihood on a demonstration based on the parameters that we are
optimizing, and πB(at|st, gt; θold) is the likelihood based on Bob’s behavior policy (at the time of
demonstration collection) evaluated on a demonstration. This behavior policy is identical to the
policy that we use to collect RL trajectories. By setting Â = 1, this objective optimizes the naive
BC loss, but clips the loss whenever πB(at|st,gt;θ)

πB(at|st,gt;θold)
is bigger than 1 + ε, to prevent the policy from

changing too much. ε is a clipping threshold and we use ε = 0.2 in all the experiments.

4 RELATED WORK

Training distribution for RL In the context of multi-task RL (Beattie et al., 2016; Hausman et al.,
2018; Yu et al., 2020), multi-goal RL (Kaelbling, 1993; Andrychowicz et al., 2017), and meta
RL (Wang et al., 2016; Duan et al., 2016), previous works manually designed a distribution of
tasks or goals to see better generalization of a policy to a new task or goal. Domain randomiza-
tion (Sadeghi & Levine, 2017b; Tobin et al., 2017; OpenAI et al., 2020) manually defines a distri-
bution of simulated environments, but in service of generalizing to the same task in the real world.

There are approaches to grow the training distribution automatically (Srivastava et al., 2013). Self-
play (Tesauro, 1995; Silver et al., 2016; 2017; Bansal et al., 2018; OpenAI et al., 2019b; Vinyals
et al., 2019) constructs an ever-growing training distribution where multiple agents learn by compet-
ing with each other, so that the resulting agent shows strong performance on a single game. OpenAI
et al. (2019a) automatically grew a distribution of domain randomization parameters to accomplish
better generalization in the task of solving a Rubik’s cube on the physical robot. Wang et al. (2019;
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2020) studied an automated way to keep discovering challenging 2D terrains and locomotion poli-
cies that can solve them in a 2D bipedal walking environment.

We employ asymmetric self-play to construct a training distribution for learning a goal-conditioned
policy and to achieve generalization to unseen tasks. Florensa et al. (2018); Nair et al. (2018b);
Racaniere et al. (2020) had the same motivation as ours, but trained a generative model instead of
a goal setting policy. Thus, the difficulties of training a generative model were inherited by these
methods: difficulty of modeling a high dimensional space and generation of unrealistic samples.
Lynch et al. (2020); Gupta et al. (2020) used teleoperation to collect arbitrary robot trajectories,
and defined a goal distribution from the states in the collected trajectories. This approach likely
requires a large number of robot trajectories for each environment configuration (e.g. various types
of objects on a table), and randomization of objects was not studied in this context.

Asymmetric self-play Asymmetric self-play was proposed by Sukhbaatar et al. (2018b) as a way
to supplement RL training. Sukhbaatar et al. (2018b) mixed asymmetric self-play training with
standard RL training on the target task and measured the performance on the target task. Sukhbaatar
et al. (2018a) used asymmetric self-play to pre-train a hierarchical policy and evaluated the policy
after fine-tuning it on a target task. Liu et al. (2019) adopted self-play to encourage efficient learning
with sparse reward in the context of an exploration competition between a pair of agents. As far as
we know, no previous work has trained a goal-conditioned policy purely based on asymmetric self-
play and evaluated generalization to unseen holdout tasks.

Curriculum learning Many previous works showed the difficulty of RL and proposed an automated
curriculum (Andrychowicz et al., 2017; Florensa et al., 2017; Salimans & Chen, 2018; Matiisen
et al., 2019; Zhang et al., 2020) or auxiliary exploration objectives (Oudeyer et al., 2007; Baranes &
Oudeyer, 2013; Pathak et al., 2017; Burda et al., 2019; Ecoffet et al., 2019; 2020) to learn predefined
tasks. When training goal-conditioned policies, relabeling or reversing trajectories (Andrychow-
icz et al., 2017; Florensa et al., 2017; Salimans & Chen, 2018) or imitating successful demonstra-
tions (Oh et al., 2018; Ecoffet et al., 2019; 2020) naturally reduces the task complexity. Our work
shares a similarity in that asymmetric self-play alleviates the difficulty of learning a goal-conditioned
policy via an intrinsic curriculum and imitation from the goal setter’s trajectory, but our work does
not assume any predefined task or goal distribution.

Hierarchical reinforcement learning (HRL) Some HRL methods jointly trained a goal setting
policy (high-level or manager policy) and a goal solving policy (low-level or worker policy) (Vezh-
nevets et al., 2017; Levy et al., 2019; Nachum et al., 2018). However, the motivation for learning a
goal setting policy in HRL is not to challenge the goal solving policy, but to cooperate to tackle a
task that can be decomposed into a sequence of sub-goals. Hence, this goal setting policy is trained
to optimize task reward for the target task, unlike asymmetric self-play where the goal setter is
rewarded upon the other agent’s failure.

Robot learning for object manipulation. It has been reported that training a policy for multi-
object manipulation is very challenging with sparse rewards (Riedmiller et al., 2018; Vecerik et al.,
2018). One example is block stacking, which has been studied for a long time in robotics as it
involves complex contact reasoning and long horizon motion planning (Deisenroth et al., 2011).
Learning block stacking often requires a hand-designed curriculum (Li et al., 2019), meticulous
reward shaping (Popov et al., 2017), fine-tuning (Rusu et al., 2017), or human demonstrations (Nair
et al., 2018a; Duan et al., 2017). In this work, we use block stacking as one of the holdout tasks to
test zero-shot generalization, but without training on it.

5 EXPERIMENTS

In this section, we first show that asymmetric self-play generates an effective training curriculum
that enables generalization to unseen hold-out tasks. Then, the experiment is scaled up to train in an
environment containing multiple random complex objects and evaluate it with a set of holdout tasks
containing unseen objects and unseen goal configurations. Finally, we demonstrate how critical
ABC is for Bob to make progress in a set of ablation studies.
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Figure 3: Holdout tasks in the environment using 1 or 2
blocks. The transparent blocks denote the desired goal
state, while opaque blocks are the current state. (a) push:
The blocks must be moved to their goal locations and
orientations. There is no differentiation between the six
block faces. (b) flip: Each side of the block is labelled
with a unique letter. The blocks must be moved to make
every face correctly positioned as what the goal specifies.
(c) pick-and-place: One goal block is in the air. (d)
stack: Two blocks must be stacked in the right order at
the right location.
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Figure 4: Generalization to unseen holdout tasks for blocks. Baselines are trained over a mixture
of all holdout tasks. The solid lines represent 2-blocks, while the dashed lines are for 1-block. The
x-axis denotes the number of training steps via asymmetric self-play. The y-axis is the zero-shot
generalization performance of Bob policy at corresponding training checkpoints. Note that success
rate curves of completely failed baselines are occluded by others.

5.1 EXPERIMENTAL SETUP

We implement the training environment2 described in Sec. 2 with randomly placed ShapeNet ob-
jects (Chang et al., 2015) as an initial state distribution. In addition, we set up another simpler
environment using one or two blocks of fixed size, used for small-scale comparisons and ablation
studies. Figure 3 visualizes four holdout tasks for this environment. Each task is designed to eval-
uate whether the robot has acquired certain manipulation skills: pushing, flipping, picking up and
stacking blocks. Experiments in Sec. 5.2, 5.3 and 5.5 focus on blocks and experimental results based
on ShapeNet objects are present on Sec. 5.4. More details on our training setups are in Appendix B.

We implement Alice and Bob as two independent policies of the same network architecture with
memory (Appendix B.4), except that Alice has no observation on goal state. The policies take state
observations (“state policy”) for experiments with blocks (Sec. 5.2, 5.3, and 5.5), and take both
vision and state observations (“hybrid policy”) for experiments with ShapeNet objects (Sec. 5.4).
Both policies are trained with Proximal Policy Optimization (PPO) (Schulman et al., 2017).

5.2 GENERALIZATION TO UNSEEN GOALS WITHOUT MANUAL CURRICULA

One way to train a single policy to acquire all the skills in Figure 3 is to train a goal-conditioned
policy directly over a mixture of these tasks. However, training directly over these tasks without a
curriculum turns out to be very challenging, as the policy completely fails to make any progress.3 In
contrast, Bob is able to solve all these holdout tasks quickly when learning via asymmetric self-play,
without explicitly encoding any prior knowledge of the holdout tasks into the training distribution.

To gauge the effect of an intrinsic curriculum introduced by self-play, we carefully designed a set
of non-self-play baselines using explicit curricula controlled by Automatic Domain Randomiza-
tion (OpenAI et al., 2019a). All baselines are trained over a mixture of block holdout tasks as the

2Our training and evaluation environments are publicly available at https://github.com/openai/robogym
3The tasks was easier when we ignored object rotation as part of the goal, and used a smaller table.
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Lift 2 blocks Lift 3 blocks Lift 3 blocks and tilt 1 Stack 4 blocks and balance

Figure 5: Goals discovered by asymmetric self-play. Alice discovers many goals that are not covered
by our manually designed holdout tasks on blocks.
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Figure 6: The empirical payoff matrix be-
tween Alice and Bob. Average success rate
over multiple self-play episode is visualized.
Alice with more training steps generates more
challenging goals that Bob cannot solve yet.
Bob with more training steps can achieve
more goals against the same Alice.

goal distribution. We measure the effectiveness of a training setup by tracking the success rate
for each holdout task, as shown in Figure 4. The no curriculum baseline fails drastically. The
curriculum:distance baseline expands the distance between the initial and goal states gradually as
training progresses, but only learns to push and flip a single block. The curriculum:distribution
baseline, which slowly increases the proportion of pick-and-place and stacking goals in the training
distribution, fails to acquire any skill. The curriculum:full baseline incorporates all hand-designed
curricula yet still cannot learn how to pick up or stack blocks. We have spent a decent amount of time
iterating and improving these baselines but found it especially difficult to develop a scheme good
enough to compete with asymmetric self-play. See Appendix C.1 for more details of our baselines.

5.3 DISCOVERY OF NOVEL GOALS AND SOLUTIONS

Asymmetric self-play discovers novel goals and solutions that are not covered by our holdout tasks.
As illustrated in Figure 5, Alice can lift multiple blocks at the same time, build a tower and then
keep it balanced using an arm joint. Although it is a tricky strategy for Bob to learn on its own, with
ABC, Bob eventually acquires the skills for solving such complex tasks proposed by Alice. Videos
are available at https://robotics-self-play.github.io.

Figure 6 summarizes Alice and Bob’s learning progress against each other. For every pair of Alice
and Bob, we ran multiple self-play episodes and measured the success rate. We observe an inter-
esting trend with 2 blocks. As training proceeds, Alice tends to generate more challenging goals,
where Bob shows lower success rate. With past sampling, Bob continues to make progress against
versions of Alices from earlier optimization steps. This visualization suggests a desired dynamic
of asymmetric self-play that could potentially lead to unbounded complexity: Alice continuously
generates goals to challenge Bob, and Bob keeps making progress on learning to solve new goals.

5.4 GENERALIZATION TO UNSEEN OBJECTS AND GOALS

The experiments above show strong evidence that efficient curricula and novel goals can au-
tonomously emerge in asymmetric self-play. To further challenge our approach, we scale it up
to work with many more complex objects using more computational resources for training. We
train a hybrid policy in an environment containing up to 10 random ShapeNet (Chang et al., 2015)
objects. During training, we randomize the number of objects and the object sizes via Automatic
Domain Randomization (OpenAI et al., 2019a). The hybrid policy uses vision observations to ex-
tract information about object geometry and size. We evaluate the Bob policy on a more diverse set
of manipulation tasks, including semantically interesting ones. Many tasks contain unseen objects
and complex goals, as illustrated in Figure 7.

The learned Bob policy achieves decent zero-shot generalization performance for many tasks. Suc-
cess rates are reported in Figure 8. Several tasks are still challenging. For example, ball-capture
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(a) Table setting (b) Mini chess (c) Domino (d) Rainbow (e) Ball-capture (f) Tangram

Figure 7: Example holdout tasks involving unseen objects and complex goal states. The goal states
are illustrated here, and the initial states have randomly placed objects.
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Figure 8: Success rates of a single goal-conditioned policy solving a variety of holdout tasks, aver-
aged over 100 trials. The error bars indicate the 99% confidence intervals. Yellow, orange and blue
bars correspond to success rates of manipulation tasks with blocks, YCB4objects and other uniquely
built objects, respectively. Videos are available at https://robotics-self-play.github.io.

requires delicate handling of rolling objects and lifting skills. The rainbow tasks call for an under-
standing of concave shapes. Understanding the ordering of placement actions is crucial for stacking
more than 3 blocks in the desired order. The Bob policy learns such an ordering to some degree, but
fails to fully generalize to an arbitrary number of stacked blocks.

5.5 ABLATION STUDIES

We present a series of ablation studies designed for measuring the importance of each component
in our asymmetric self-play framework, including Alice behavioral cloning (ABC), BC loss clip-
ping, demonstration filtering, and the multi-goal game setup. We disable a single ingredient in each
ablation run and compare with the complete self-play baseline in Figure 9.
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Figure 9: The ablation studies compare four ablation runs each with one component disabled with
the full baseline. Solid lines are for 2-blocks, dashed lines are for 1-block. The x-axis denotes
the number of training steps via asymmetric self-play. The y-axis is the zero-shot generalization
performance of Bob policy at corresponding training steps.

The no ABC baseline shows that Bob completely fails to solve any holdout task without ABC, indicat-
ing that ABC is a critical mechanism in asymmetric self-play. The no BC loss clipping baseline
shows slightly slower learning on pick-and-place and stack, as well as some instabilities in the

4https://www.ycbbenchmarks.com/object-models/
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middle of training. Clipping in the BC loss is expected to help alleviate this instability by con-
trolling the rate of policy change per optimizer iteration. The no demonstration filter baseline
shows noticeable instability on flip, suggesting the importance of excluding suboptimal demon-
strations from behavioral cloning. Finally, the single-goal baseline uses a single goal instead of 5
goals per episode during training. The evaluation tasks are also updated to require a single success
per episode. Generalization of this baseline to holdout tasks turns out to be much slower and less
stable. It signifies some advantages of using multiple goals per episode, perhaps due to the policy
memory internalizing environmental information during multiple trials of goal solving.

The results of the ablation studies suggest that ABC with proper configuration and multi-goal game-
play are critical components of asymmetric self-play, alleviating the importance of manual curricula
and facilitating efficient learning.

6 CONCLUSION

One limitation of our asymmetric self-play approach is that it depends on a resettable simulation
environment as Bob needs to start from the same initial state as Alice’s. Therefore asymmetric
self-play training has to happen in a simulator which can be easily updated to a desired state. In
order to run the goal-solving policy on physical robots, we plan to adopt sim-to-real techniques in
future work. Sim-to-real has been shown to achieve great performance on many robotic tasks in the
real world (Sadeghi & Levine, 2017a; Tobin et al., 2017; James et al., 2019; OpenAI et al., 2020).
One potential approach is to pre-train two agents via asymmetric self-play in simulation, and then
fine-tune the Bob policy with domain randomization or data collected on physical robots.

In conclusion, we studied asymmetric self-play as a framework for defining a single training distribu-
tion to learn many arbitrary object manipulation tasks. Even without any prior knowledge about the
target tasks, asymmetric self-play is able to train a strong goal-conditioned policy that can generalize
to many unseen holdout tasks. We found that asymmetric self-play not only generates a wide range
of interesting goals but also alleviates the necessity of designing manual curricula for learning such
goals. We provided evidence that using the goal setting trajectory as a demonstration for training
a goal solving policy is essential to enable efficient learning. We further scaled up our approach to
work with various complex objects using more computation, and achieved zero-shot generalization
to a collection of challenging manipulation tasks involving unseen objects and unseen goals.
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Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, Rafal Józefowicz,
Scott Gray, Catherine Olsson, Jakub Pachocki, Michael Petrov, Henrique Pondé de Oliveira Pinto,
Jonathan Raiman, Tim Salimans, Jeremy Schlatter, Jonas Schneider, Szymon Sidor, Ilya
Sutskever, Jie Tang, Filip Wolski, and Susan Zhang. Dota 2 with large scale deep reinforcement
learning. arXiv preprint arXiv:1912.06680, 2019b.

OpenAI, Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob McGrew,
Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray, Jonas Schneider, Szy-
mon Sidor, Josh Tobin, Peter Welinder, Lilian Weng, and Wojciech Zaremba. Learning dexterous
in-hand manipulation. The International Journal of Robotics Research, 39(1):3–20, 2020.

12



Pierre-Yves Oudeyer, Frdric Kaplan, and Verena V Hafner. Intrinsic motivation systems for au-
tonomous mental development. IEEE transactions on evolutionary computation, 11(2):265–286,
2007.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, 2017.

Ivaylo Popov, Nicolas Heess, Timothy Lillicrap, Roland Hafner, Gabriel Barth-Maron, Matej Ve-
cerik, Thomas Lampe, Yuval Tassa, Tom Erez, and Martin Riedmiller. Data-efficient deep rein-
forcement learning for dexterous manipulation. arXiv preprint arXiv:1704.03073, 2017.

Sebastien Racaniere, Andrew Lampinen, Adam Santoro, David Reichert, Vlad Firoiu, and Timothy
Lillicrap. Automated curriculum generation through setter-solver interactions. In International
Conference on Learning Representations, 2020.

Martin Riedmiller, Roland Hafner, Thomas Lampe, Michael Neunert, Jonas Degrave, Tom Van
de Wiele, Volodymyr Mnih, Nicolas Heess, and Jost Tobias Springenberg. Learning by playing -
solving sparse reward tasks from scratch, 2018.
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A ASYMMETRIC SELF-PLAY GAME SETUP

A.1 GOAL VALIDATION

Some of the goals set via asymmetric self-play may not be useful or interesting enough to be included
in the training distribution. For example, if Alice fails to touch any objects, Bob can declare a success
without any action. A goal outside the table might be tricky to solve. We label such goals as invalid
and make sure that Alice has generated a valid goal before starting Bob’s turn.

Even when Alice generates a valid goal, we can still penalize certain undesired goals. Specifically,
if the visual perception is limited to a restricted area on the table due to the camera setting, we can
penalize goals containing objects outside that range of view.

For goal validation, we check in the following order:

1. We check whether any object has moved. If not, the goal is considered invalid and the
episode resets.

2. We check whether all the objects are on the table. If not, the goal is considered invalid and
the episode resets.

3. We check whether a valid goal has objects outside the placement area, defined to be a 3D
space that the robot end effector can reach and the robot camera can see. If any object is
outside the area, the goal is deemed valid but obtains a out-of-zone penalty reward and the
episode continues to switch to Bob’s turn.

A.2 REWARD STRUCTURE

Table 1 shows the reward structure for a single turn for goal setting and solving. The reward for
Alice is based on whether it successfully generates a valid goal, and whether the generated goal is
solved by Bob. Alice obtains 1 point for a valid goal, and obtains an additional 5 point game reward
if Bob fails to achieve it. Additionally, a goal out of placement area triggers a−3 penalty. Rewarding
Alice based only on Bob’s success or failure is simpler than the original reward from Sukhbaatar
et al. (2018b), but we didn’t notice any degradation from this simplification (Appendix C.2).

Since Bob is a goal-conditioned policy, we provide sparse goal-conditioned rewards. Whenever one
object is placed at its desired position and orientation, Bob obtains 1 point per-object reward. Bob
obtains -1 reward such that the sum of per-object reward is at most 1 during a given turn. When all
the objects are in the goal state, Bob obtains a 5 point success reward and its turn terminates. If Bob
reaches a maximum number of allowed steps before achieving the goal, it is deemed a failure with
0 point reward.

When checking whether a goal has been achieved, we compare the position and orientation of each
object with its goal position and orientation. For position, we compute the Euclidean distance be-
tween object centers. For rotation, we represent the orientation of an object by three Euler angles
on three dimensions, roll, pitch, and yaw, respectively, and we compute the minimum angle needed
to rotate the object into the goal orientation. If the distance and angle for all objects are less than a
small error (0.04 meters and 0.2 radians respectively), we consider the goal achieved.

Table 1: Reward structure for a single goal.

Alice Bob Alice reward Bob reward
Invalid goal - 0 -

Out-of-zone goal Failure 1 - 3 + 5 0 + per-object reward
Out-of-zone goal Success 1 - 3 + 0 5 + per-object reward

Valid goal Failure 1 + 5 0 + per-object reward
Valid goal Success 1 + 0 5 + per-object reward

A.3 MULTI-GOAL GAME STRUCTURE

The overall flowchart of asymmetric self-play with a multi-goal structure is illustrated in Figure 10.
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Figure 10: The flow chart of asymmetric self-play with a multi-goal game structure. The steps in
orange belong to Alice while the blue ones belong to Bob.

We expect a multi-goal game structure to induce a more complicated goal distribution, as goals
can be built on top of each other. For example, in order to stack 3 blocks, you might need to
stack 2 blocks first as a subgoal at the first step. A multi-goal structure also encourages Bob to
internalize environmental information during multiple trials of goal solving. Many aspects of the
environment, such as the simulator’s physical dynamics and properties of objects, stay constant
within one episode, so Bob can systematically investigate these constant properties and exploit them
to adapt its goal solving strategy accordingly. Similar behavior with multi-goal setting was observed
by OpenAI et al. (2019a).

In our experiments, when we report the success rate from multi-goal episodes, we run many episodes
with a maximum of 5 goals each and compute the success rate as

success_rate =
total_successes

total_goals
.

Note that because each episode terminates after one failure, at the end of one episode, we would
have either total_goals = total_successes if Bob succeeded at every goal, or total_goals =
total_successes+ 1 if Bob fails in the middle.

A.4 TRAINING ALGORITHM

Algorithm 1 and 2 describe pseudocode for the training algorithm using asymmetric self-play. Both
policies are optimized via Proximal Policy Optimization (PPO) (Schulman et al., 2017). Addition-
ally, Bob optimizes the Alice behavioral cloning (ABC) loss using Alice’s demonstrations collected
during the interplay between two agents. In the algorithm, LRL denotes a loss function for PPO and
LABC denotes a loss function for ABC. A trajectory τ contains a list of (state, action, reward) tuples,
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Algorithm 1 Asymmetric self-play
Require: θA, θB . Initial parameters for Alice and Bob
Require: η . RL learning rate
Require: β . weight of BC loss

for training steps = 1, 2, ... do
θold

A ← θA, θ
old
B ← θB . initialize behavior policy parameters

for each rollout worker do . parallel data collection
DA,DB,DBC ← CollectRolloutData(θold

A , θold
B ) . replay buffers for Alice, Bob and ABC

end for
θA ← θA − η∇θALRL . optimize PPO loss with data popped from DA
θB ← θB − η∇θB

[
LRL + βLABC

]
. optimize RL loss with DB and ABC loss with DBC

end for

Algorithm 2 CollectRolloutData

Require: θold
A , θold

B . behavior policy parameters for Alice and Bob
Require: πA(a|s; θold

A ), πB(a|s, g; θold
B ) . policies for Alice and Bob

Require: ξ . whether Bob succeeded to achieve a goal
DA ← ∅,DB ← ∅,DBC ← ∅ . Initialize empty replay buffers.
ξ ←True . initialize to True (success)
for number of goals = 1, ..., 5 do

τA, g ← GenerateAliceTrajectory(πA, θold
A ) . generates a trajectory τA and a goal g

if goal g is invalid then
break

end if
if ξ is True then

τB, ξ ← GenerateBobTrajectory(πB, θ
old
B , g) . generate a trajectory τB and update ξ

DB ← DB ∪ {τB} . update replay buffer for Bob
end if
rA ← ComputeAliceReward(ξ, g)
τA[−1][2]← rA . overwrite the last reward in trajectory τA with rA
DA ← DA ∪ {τA} . update replay buffer for Alice
if ξ is False then

τBC ← RelabelDemonstration(τA, g, πB, θ
old
B ) . relabeled to be goal-augmented

DBC ← DBC ∪ {τBC} . update replay buffer for ABC
end if

end for
return DA,DB,DBC

τ = {(s0, a0, r0), (s1, a1, r1), . . . }. A goal-augmented trajectory τBC contains a list of (state, goal,
action, reward) tuples, τBC = {(s0, g, a0, r0), (s1, g, a1, r1), . . . }.

B TRAINING SETUP

B.1 SIMULATION SETUP

We utilize the MuJoCo physics engine (Todorov et al., 2012) to simulate our robot environment and
render vision observations and goals. We model a UR16e robotic arm equipped with a RobotIQ
2F-85 parallel gripper end effector. The robot arm is controlled via its tool center point (TCP) pose
that is actuated via MuJoCo constraints. Additionally, we use a PID controller to actuate the parallel
gripper using position control.

B.2 ACTION SPACE

We define a 6-dimensional action space consisting of 3D relative gripper position, 2D relative grip-
per rotation, and a 1D desired relative gripper finger position output that is applied symmetrically
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(a) Front camera (b) Wrist camera (c) Front camera (goal)

Figure 11: Example vision observations from our camera setup. (a) observation from a camera
mounted in front of the table (the front camera). (b) observation from the mobile camera mounted
on the gripper wrist. (c) goal observation from the front camera.

to the two gripper pinchers. The two rotational degrees of freedom correspond to yaw and pitch
axes (wrist rotation and wrist tilt) respectively, with respect to the gripper base. We use a discretized
action space with 11 bins per dimension and learn a multi-categorical distribution.

B.3 OBSERVATION SPACE

We feed observations of robot arm position, gripper position, object state, and goal state into the
policy. The object state observation contains each object’s position, rotation, velocity, rotational
velocity, the distance between the object and the gripper, as well as whether this object has contacts
with the gripper. The goal state observation includes each object’s desired position and rotation, as
well as the relative distance between the current object state and the desired state.

In the hybrid policy for the ShapeNet training environment, we additionally feed three camera im-
ages into the policy: an image of the current state captured by a fixed camera in front of the table,
an image of the current state from a camera mounted on the gripper wrist, and an image of the goal
state from the fixed camera. Figure 11 illustrates the example observations from our camera setup.
Both Alice and Bob take robot and object state observations as inputs, but Alice does not take goal
state inputs since it is not goal-conditioned.

B.4 MODEL ARCHITECTURE

We use independent policy and value networks in the PPO policy. Both have the same observation
inputs and network architecture, as illustrated in Figure 13. The permutation invariant embedding
module concatenates all the observations per object, learns an embedding vector per object and then
does max pooling in the object dimension. The vision module uses the same model architecture as
in IMPALA (Espeholt et al., 2018). For all experiments, we use completely separate parameters for
the policy and the value network except the vision module, which is shared between them.

B.5 HYPERPARAMETERS

Hyperparameters used in our PPO policy and asymmetric self-play setup are listed in Table 2 and
Table 3.

The maximum goal solving steps for Bob reported in Table 3 is the number of steps allowed per
object within one episode. If Bob has spent all these time steps but still cannot solve the goal, it
deems a failure and the episode terminates for Bob.
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Figure 12: Network architecture of value/policy network.

Table 2: Hyperparameters used for PPO.

Hyperparameter Value

discount factor γ 0.998

Generalized Advantage Estimation (GAE) λ 0.95

entropy regularization coefficient 0.01

PPO clipping parameter εppo 0.2

ABC clipping parameter ε 0.2

optimizer Adam (Kingma & Ba, 2014)
learning rate η 3× 10−4

sample reuse (experience replay) 3
value loss weight 1.0

ABC loss weight 0.5

Table 3: Hyperparameters used for hardware configuration, batch size and self-play episode length.

Hyperparameter 1-2 Block manipulation (state) ShapeNet object rearrangement (hybrid)

GPUs per policy 1 32× 8

rollout worker CPUs 64× 29 576× 29

batch size 4096 55× 32× 8

Alice’s goal setting steps T 100 250

Bob’s maximum goal solving steps 200 600

B.6 HOLDOUT TASKS

Here are a list of tasks for evaluating zero-shot generalization capability of the hybrid policy. Some
of them are visualized in Figure 8. Note that none of the objects here appear in the training data.

• Table setting: arrange a table setting consisting of a plate, spoon, knife, salad fork, and
main course fork.

• Mini chess: place four chess pieces next to a chess board.

• Rainbow (2-6 pieces): build a rainbow out of colored, wooden pieces by placing the half-
circle shapes together so they resemble a rainbow. We have 5 variations of the rainbow
tasks by taking different numbers of pieces which are indexed from the outer circle to inner
one.
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• Ball-capture: capture two, red field-hockey balls by placing four (two blue and two green)
cylinders at so their rotational axes intersect rays from the spheres at roughly 90, 240, and
300 degree angles about the same axial (Z) direction.

• Tangram Puzzle: move blue pieces to form the standard, seven piece tangram square solu-
tion.

• Domino: stand up 5 wooden domino pieces in a curved layout.
• Block push (1–8 objects): push blocks to match position and orientation of goal configura-

tions. All goal objects are on the surface of the table.
• Block pick-and-place (1–3 objects): push blocks, and lift up one block in the air. One goal

object is in the air and all other goal objects are on the table surface.
• Block stacking (2–4 objects): stack blocks to form a tower in a specific location and specific

rotation.
• YCB object push (1–8 objects): push YCB objects5 to match position and orientation of

goal configurations. All goal objects are on the surface of the table.
• YCB pick-and-place (1–3 objects): push YCB objects and lift up one YCB object in the

air. One goal object is in the air and all other goal objects are on the table surface.

By default, each holdout task presents 5 goals per episode and terminates episodes upon a failure.
Exceptions are Table setting, Mini chess, Rainbow (2-6 pieces), Ball-capture, and Tangram, which
only present a single goal per episode because only a single fixed goal configuration is available for
each holdout task.

C NON SELF-PLAY BASELINES

C.1 BASELINES FOR CURRICULUM

We compared asymmetric self-play with several baselines incorporating hand-designed curricula in
Sec. 5.2.

All the baselines are trained on a mixture of push, flip, pick-and-place, and stacking tasks as the
goal distribution. The initial state of objects is generated by randomly placing objects within the
placement area of the table without overlaps. The number of objects is sampled from {1, 2} with
equal probability.

Factorized Automatic Domain Randomization (FADR) (OpenAI et al., 2019a) is applied to grow
curriculum parameters described below. Precisely, for each parameter we track a list of performance
scores when the parameter is configured at current maximum and other parameters are randomly
sampled. The value of this parameter will be increased if the tracked score rises above a threshold.

1. The no curriculum baseline trains the goal-conditioned policy directly on a fixed goal
distribution and environment parameters. Precisely there are 50% goals for push and flip,
35% for pick-and-place, and 15% for stacking.

2. The curriculum:distance baseline uses a hand-designed curriculum over (1)
goal_distance_ratio: the Euclidean distance between the initial position of the objects
and their goal positions, and (2) goal_rotation_weight: the weight applied on the ob-
ject rotation distance for goal state matching. At the beginning of the episode, given an
initial position x0 and a goal position xg , we artificially make the goal easier accord-
ing to goal_distance_ratio by resetting the goal position to x′g = x0 + (xg − x0) ×
goal_distance_ratio. A small ratio reduces the distance and thus makes the task less
difficult. The parameter goal_rotation_weight controls how much we care about a good
match between object rotation. Given the current object rotation rt and a desired rotation
rg , we consider them as a valid match if |rt − r0| × goal_rotation_weight < rthreshold,
where rthreshold = 0.2 (radians) is the success threshold for rotational matching. In other
words, a small goal rotation weight creates a less strict success threshold. Both parameters
range between [0, 1] and gradually increase from 0 to 1 as training progresses.

5https://www.ycbbenchmarks.com/object-models/
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3. The curriculum:distribution controls the proportion of pick-and-place and stacking
goals via two ADR parameters, pickup_proba and stack_proba. When sampling new
goals, with probability pickup_proba, a random object is moved up to the air and with
probability stack_proba, we consider a small 2-block tower as the goal. Both parameters
range between [0, 0.5] and gradually increase from 0 to 0.5 as training progresses.

4. The curriculum:full baseline adopts all the ADR parameters described so far,
goal_distance_ratio, goal_rotation_weight, pickup_proba and stack_proba. When
setting up a pick-and-place goal, the height above the table surface is also interpolated
according to goal_distance_ratio.

C.2 COMPARISON WITH TIMESTEP-BASED REWARD

Contrary to timestep-based reward originally proposed by Sukhbaatar et al. (2018b), we reward Al-
ice simply based on the success or failure of Bob’s goal solving attempt. We compare our simplified
reward structure with timestep-based reward for Alice as described in Sukhbaatar et al. (2018b) with
time reward scale factor 0.01 (γ = 0.01 based on the notation from Sukhbaatar et al. (2018b)).
The performance is very similar. Note that this result is not a direct comparison to Sukhbaatar
et al. (2018b), but an ablation study of two different reward functions based on our best asymmetric
self-play configuration.
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Figure 13: The comparison of our asymmetric self-play reward with the timestep-based reward.
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