
Article

The International Journal of

Robotics Research

2020, Vol. 39(1) 3–20

� The Author(s) 2019

Article reuse guidelines:

sagepub.com/journals-permissions

DOI: 10.1177/0278364919887447

journals.sagepub.com/home/ijr

Learning dexterous in-hand manipulation

OpenAI: Marcin Andrychowicz, Bowen Baker, Maciek Chociej,

Rafal Józefowicz, Bob McGrew, Jakub Pachocki, Arthur Petron ,

Matthias Plappert , Glenn Powell, Alex Ray, Jonas Schneider,

Szymon Sidor, Josh Tobin, Peter Welinder, Lilian Weng and Wojciech Zaremba

Abstract

We use reinforcement learning (RL) to learn dexterous in-hand manipulation policies that can perform vision-based object

reorientation on a physical Shadow Dexterous Hand. The training is performed in a simulated environment in which we

randomize many of the physical properties of the system such as friction coefficients and an object’s appearance. Our pol-

icies transfer to the physical robot despite being trained entirely in simulation. Our method does not rely on any human

demonstrations, but many behaviors found in human manipulation emerge naturally, including finger gaiting, multi-finger

coordination, and the controlled use of gravity. Our results were obtained using the same distributed RL system that was

used to train OpenAI Five. We also include a video of our results: https://youtu.be/jwSbzNHGflM.

Keywords

Dexterous manipulation, multifingered hands, adaptive control, learning and adaptive systems, humanoid robots

1. Introduction

While dexterous manipulation of objects is a fundamental

everyday task for humans, it is still challenging for autono-

mous robots. Modern-day robots are typically designed for

specific tasks in constrained settings and are largely unable

to utilize complex end-effectors. In contrast, people are able

to perform a wide range of dexterous manipulation tasks in

a diverse set of environments, making the human hand a

grounded source of inspiration for research into robotic

manipulation.

The Shadow Dexterous Hand (ShadowRobot, 2005) is

an example of a robotic hand designed for human-level

dexterity; it has five fingers with a total of 24 degrees of

freedom (DoFs). The hand has been commercially available

since 2005; however, it still has not seen widespread adop-

tion, which can be attributed to the daunting difficulty of

controlling systems of such complexity. The state-of-the-art

in controlling five-fingered hands is severely limited. Some

prior methods have shown promising in-hand manipulation

results in simulation but do not attempt to transfer to a real-

world robot (Bai and Liu, 2014; Mordatch et al., 2012).

Conversely, owing to the difficulty in modeling such com-

plex systems, there has also been work in approaches that

only train on a physical robot (Falco et al., 2018; Kumar

et al., 2016a,b; van Hoof et al., 2015). However, because

physical trials are so slow and costly to run, the learned

behaviors are very limited.

In this work, we demonstrate methods to train control

policies that perform in-hand manipulation and deploy

them on a physical robot. The resulting policy exhibits

unprecedented levels of dexterity and naturally discovers

grasp types found in humans, such as the tripod, prismatic,

and tip pinch grasps, and displays contact-rich, dynamic

behaviors such as finger gaiting, multi-finger coordination,

the controlled use of gravity, and coordinated application

of translational and torsional forces to the object. Figure 1

depicts an exemplary manipulation sequence. Our policy

can also use vision to sense an object’s pose: an important

aspect for robots that should ultimately work outside of a

controlled lab setting.

Despite training entirely in a simulator that substantially

differs from the real world, we obtain control policies that

perform well on the physical robot. We attribute our transfer

results to (1) extensive randomizations and added effects in

the simulated environment alongside calibration, (2)

OpenAI, San Francisco, CA, USA

Corresponding author:

Matthias Plappert, OpenAI, 3180 18th Street, San Francisco, CA 94110,

USA.

Email: matthias@openai.com

uk.sagepub.com/en-gb/journals-permissions
https://doi.org/10.1177/0278364919887447
journals.sagepub.com/home/ijr
https://youtu.be/jwSbzNHGflM
http://crossmark.crossref.org/dialog/?doi=10.1177%2F0278364919887447&domain=pdf&date_stamp=2019-11-18

memory augmented control polices that admit the possibil-

ity to learn adaptive behavior and implicit system identifi-

cation on the fly, and (3) training at large scale with

distributed reinforcement learning (RL). An overview of

our approach is depicted in Figure 2.

The paper is structured as follows. In Section 2 we

briefly introduce the most important RL concepts and algo-

rithms used in this work. Section 3 gives a system over-

view, describes the proposed task in more detail, and

shows the hardware setup. Section 4 describes observations

for the control policy, environment randomizations, and

additional effects added to the simulator that make transfer

possible. Section 5 outlines the control policy training pro-

cedure and our distributed RL system. Section 6 describes

the vision model architecture and training procedure.

Section 7 describes both qualitative and quantitative results

from deploying the control policy and vision model on a

physical robot. Section 8 discusses related work and we

conclude with Section 9.

2. Background

In this section, we introduce the most fundamental RL con-

cepts and discuss the algorithms that we use in this work.

For an in-depth introduction to RL, please refer to Sutton

and Barto (1998) and Bertsekas (2005).

2.1. RL

We consider the standard RL formalism consisting of

an agent interacting with an environment. To simplify

the exposition, we assume in this section that the environ-

ment is fully observable.
1

An environment is described

by a set of states S, a set of actions A, a distribution of ini-

tial states p(s0), a reward function r : S×A ! R,

transition probabilities p(st + 1jst, at), and a discount factor

g 2 ½0, 1�.
A policy p is a mapping from a state to a distribution

over actions. Every episode starts by sampling an initial

state s0. At every timestep t the agent produces an action

based on the current state: at;p(� jst). In turn, the agents

receive a reward rt = r(st, at) and the environment’s new

state st + 1, which is sampled from the distribution

p(� jst, at). The discounted sum of future rewards, also

referred to as the return, is defined as Rt =
P‘

i = t gi�tri.

The agent’s goal is to maximize its expected return

E½R0js0�, where the expectation is taken over the initial

state distribution, policy, and environment transitions

accordingly to the dynamics specified above.

The Q-function or action-value function is defined as

Qp(st, at)=E½Rtjst, at�, while the V-function or state-value

function is defined as V p(st)=E½Rtjst�. The value

Ap(st, at)= Qp(st, at)� V p(st) is called the advantage and

indicates whether the action at is better or worse than an

average action the policy p takes in the state st.

2.2. Generalized advantage estimator

Let V be an approximator to the value function of some

policy, i.e., V’V p. The value

V̂
(k)
t =

Xt + k�1

i = t

gi�tri + gkV (st + k)’V p(st, at)

is called the k-step return estimator. The parameter k con-

trols the bias–variance tradeoff of the estimator with bigger

values resulting in an estimator closer to empirical returns

and having less bias and more variance. The generalized

advantage estimator (GAE) (Schulman et al., 2015) is a

method of combining multi-step returns in the following

way:

Fig. 1. A five-fingered humanoid hand trained with reinforcement learning manipulating a block from an initial configuration to a

goal configuration using vision for sensing.

4 The International Journal of Robotics Research 39(1)

V̂GAE
t = (1� l)

X
k.0

lk�1V̂
(k)
t ’V p(st, at)

where 0\l\1 is a hyperparameter. The advantage can

then be estimated as follows:

ÂGAE
t = V̂GAE

t � V (st)’Ap(st, at)

It is possible to compute the values of this estimator for

all states encountered in an episode in linear time

(Schulman et al., 2015).

2.3. Proximal policy optimization

Proximal policy optimization (PPO) (Schulman et al.,

2017) is one of the most popular on-policy RL algorithms.

It simultaneously optimizes a stochastic policy as well as

an approximator to the value function. PPO interleaves the

collection of new episodes with policy optimization. After

a batch of new transitions is collected, optimization is per-

formed with minibatch stochastic gradient descent to maxi-

mize the objective:

LPPO =Emin

p(atjst)

pold(atjst)
ÂGAE

t ,

clip
p(atjst)

pold(atjst)
, 1� e, 1 + e

� �
ÂGAE

t

! ð1Þ

where
p(at jst)

pold(at jst)
is the ratio of the probability of taking the

given action under the current policy p to the probability

of taking the same action under the old behavioral policy

that was used to generate the data. Here e is a

Fig. 2. System overview. (a) We use a large distribution of simulations with randomized parameters and appearances to collect data

for both the control policy and vision-based pose estimator. (b) The control policy receives observed robot states and rewards from the

distributed simulations and learns to map observations to actions using a recurrent neural network and RL. (c) The vision-based pose

estimator renders scenes collected from the distributed simulations and learns to predict the pose of the object from images using a

convolutional neural network (CNN), trained separately from the control policy. (d) To transfer to the real world, we predict the object

pose from three real camera feeds with the CNN, measure the robot fingertip locations using a 3D motion capture system, and give

both of these to the control policy to produce an action that gets executed on the physical robot.

OpenAI et al. 5

hyperparameter (usually e’0:2) that controls the amount

of clipping. This loss encourages the policy to take actions

that are better than average (have positive advantage) while

clipping discourages bigger changes to the policy by limit-

ing how much can be gained by changing the policy on a

particular data point.

The value function approximator is trained with super-

vised learning with the target for V (st) being V̂GAE
t . To

boost exploration, it is a common practice to encourage the

policy distribution to have high entropy by including an

entropy bonus in the optimization objective.

3. Task and system overview

In this work, we consider the problem of in-hand object

reorientation. We place the object under consideration onto

the palm of a humanoid robot hand. The goal is to reorient

the object to a desired target configuration in-hand. As soon

as the current goal is (approximately) achieved, a new goal

is provided until the object is eventually dropped. We use

two different objects, a block and an octagonal prism.

This section first describes our hardware setup in detail

and then describes how we model the task in simulation.

3.1. Hardware

Our hardware setup consists of a Shadow Dexterous Hand,

a PhaseSpace tracking system, as well as a RGB camera

system for vision. The entire setup is depicted in Figure 3.

3.1.1. Shadow Dexterous Hand. We use the Shadow

Dexterous Hand, which is a humanoid robotic hand with

24 DoFs actuated by 20 pairs of agonist–antagonist ten-

dons. Of the 24 DoFs, 16 can be controlled independently

whereas the remaining 8 joints (which are the joints

between the non-thumb finger proximal, middle, and distal

segments) form 4 pairs of coupled joints. We use the ver-

sion with electric motor actuators.

3.1.2. PhaseSpace tracking. We use a 3D tracking system

to localize the tips of the fingers, to perform calibration

procedures, and as ground truth for the RGB image-based

object tracking. The PhaseSpace Impulse X2E tracking

system uses active LED markers that blink to transmit a

unique ID code and linear detector arrays in the cameras to

detect the positions and IDs. The system features capture

speeds of up to 960 Hz and positional accuracies of below

20 mm. The data is exposed as a 3D point cloud together

with labels associating the points with stable numerical

IDs. Our setup uses 16 cameras distributed spherically

around the hand and centered on the palm with a radius of

approximately 0:8 meters.

3.1.3. RGB cameras. For estimating the pose of the object

that the hand is manipulating, we have two setups: one that

uses PhaseSpace markers to track the object (described

above) and one that uses three Basler RGB cameras for

vision-based pose estimation. This is because our goal is to

eventually have a system that works outside of a lab envi-

ronment, and vision-based systems are better equipped to

handle the real world.

Each Basler acA640-750uc RGB camera has a resolu-

tion of 640× 480 and is placed approximately 50 cm from

the Shadow hand. We use three cameras to resolve pose

ambiguities that may occur with monocular vision. We

chose these cameras for their flexible parameterization and

low latency. Figure 4 shows the placement of the cameras

relative to the hand.

3.1.4. Control. The high-level controller is implemented as

a Python program running a neural network policy using

Fig. 3. The ‘‘cage’’ that houses the robot hand, 16 PhaseSpace

tracking cameras, and 3 Basler RGB cameras.

Fig. 4. Our three-camera setup for vision-based state estimation.

6 The International Journal of Robotics Research 39(1)

Tensorflow (Abadi et al., 2016) on a GPU. Every 80 ms it

queries the PhaseSpace sensors and then runs inference

with the neural network to obtain the action, which takes

roughly 25 ms. If vision-based state estimation is used, we

additionally use the video feed from the three RGB cameras

and produce a pose estimate of the object before feeding it

into the policy. The policy outputs an action that specifies

the change of position for each actuator, relative to the cur-

rent position of the joints controlled by the actuator. It then

sends the action to the low-level controller.

The low-level controller is implemented in C + + as a

separate process on a different machine that is connected to

the Shadow hand via an Ethernet cable. The controller is

written as a real-time system: it is pinned to a CPU core,

has preallocated memory, and does not depend on any gar-

bage collector to avoid non-deterministic delays. The con-

troller receives the relative action, converts it into an

absolute joint angle and clips to the valid range, then sets

each component of the action as the target for a PD con-

troller. Every 5 ms, the PD controller queries the Shadow

Hand joint angle sensors, then attempts to achieve the

desired position.

3.1.5. Joint sensor calibration. The hand contains 26 Hall

effect sensors that sense magnetic field rotations along the

joint axis. To transform the raw magnetic measurements

from the Hall sensors into joint angles, we use a piecewise

linear function interpolated from 3–5 truth points per joint.

To calibrate this function, we initialize to the factory default

created using physical calibration jigs. For further accuracy,

we attach PhaseSpace markers to the fingertips, and mini-

mize the error between the position reported by the

PhaseSpace markers and the position estimated from the

joint angles. We estimate these linear functions by minimiz-

ing the reprojection error with scipy.minimize.

3.2. Simulation

We simulate the physical system with the MuJoCo physics

engine (Todorov et al., 2012) and we use Unity (Unity

Technologies, 2005) to render the images for training the

vision-based pose estimator. Our model of the Shadow

Dexterous Hand is based on that used in the OpenAI Gym

robotics environments (Brockman et al., 2016; Plappert

et al., 2018), but has been improved to match the physical

system more closely through calibration. A rendering of

our simulation is depicted in Figure 5. In the remainder of

this section, we describe all aspects of our simulation in

detail.

3.2.1. States. The state of the system is 60-dimensional

and consists of angles and velocities of all robot joints as

well as the position, rotation, and velocities (linear and

angular) of the object. Initial states are sampled by placing

the object on the robot’s palm in a random orientation and

applying random actions for 100 steps (we discard the trial

if the object is dropped in the meantime).

3.2.2. Goals. The goal is the desired orientation of the

object represented as a quaternion. A new goal is generated

after the current one has been achieved within a tolerance

of 0.4 rad. We consider a goal achieved if there exists a

rotation of the object around an arbitrary axis with an angle

smaller than 0.4 rad which transforms the current orienta-

tion into the desired one.

3.2.3. Actions. Actions are 20-dimensional and correspond

to the desired angles of the hand joints. We discretize each

action coordinate into 11 bins of equal size. Owing to the

inaccuracy of joint angle sensors on the physical hand,

actions are specified relative to the current hand state. In

particular, the torque applied to the given joint in simula-

tion is equal to P � (st + a� st0), where st is the joint angle

at the time when the action was specified, a is the corre-

sponding action coordinate, st0 is the current joint angle,

and P is the proportionality coefficient. For the coupled

joints, the desired and actual positions represent the sum of

the two joint angles.

All actions are rescaled to the range ½�1, 1�. To avoid

abrupt changes to the action signal, which could harm a

physical robot, we smooth the actions using an exponential

moving average using a coefficient of 0:3 per 80 ms. before

applying them (both in simulation and during deployments

on the physical robot).

3.2.4. Rewards. The reward given at timestep t is

rt = dt � dt + 1, where dt and dt + 1 are the rotation angles

between the desired and current object orientations before

and after the transition, respectively. We give an additional

Fig. 5. A rendering of our simulated environment.

OpenAI et al. 7

reward of 5 whenever a goal is achieved with the tolerance

of 0.4 rad (i.e., dt + 1\0:4) and a reward of �20 (penalty)

whenever the object is dropped.

3.2.5. Timing. Each environment step corresponds to 80

ms of real time and consists of 10 consecutive MuJoCo

simulation steps, each corresponding to 8 ms. An episode

ends whenever either the policy achieves 50 consecutive

goals, the policy fails to achieve the current goal within 8

seconds of simulated time, or the object is dropped.

3.2.6. Model calibration. We calibrate the parameters of

our MuJoCo XML model to better match our physical

setup. To do so, we record a trajectory on the physical robot

and then optimize over parameters to minimize the error

between the simulated and real trajectory.

To create the trajectory, we run two hand-designed poli-

cies in sequence against each finger. The first policy mea-

sures the behavior of the joints near their limits by

extending the joints of each finger completely inward and

then completely outward until they stop moving. The sec-

ond policy measures the dynamic response of the finger by

moving the joints of each finger inward and then outward

in a series of oscillations. The recorded trajectory across all

fingers lasts a few minutes.

To optimize the model parameters, these trajectories are

then replayed as open-loop action sequences in the simula-

tor. The optimization objective is to match simulated and

real joint angles after 1 second. Parameters are adjusted

using iterative coordinate descent until the error is mini-

mized. We exclude modifications to the XML that do not

yield an improvement larger than 0:1%. For each joint, we

optimize damping, equilibrium position, static friction loss,

stiffness, margin, and the minimum and maximum of the

joint range. For each actuator, we optimize its proportional

gain, force range, and the magnitude of backlash in each

direction. Collectively, this corresponds to 264 values.

4. Transferable simulations

Despite our calibration and modeling efforts, the simulation

is still only a rough approximation of the physical setup.

For example, our model directly applies torque to joints

instead of tendon-based actuation and uses rigid-body con-

tact models instead of deformable-body contact models

even though the physical robot has deformable fingertips

made out of rubber. These differences cause a ‘‘reality gap’’

and make it unlikely for a policy trained in a simulation

with these inaccuracies to transfer well.

We therefore face a dilemma: we cannot train on the

physical robot because deep RL algorithms require millions

of samples; conversely, training only in simulation results

in policies that do no transfer well due to the gap between

the simulated and real environments. To overcome the real-

ity gap, we modify the basic version of our simulation to a

distribution over many simulations that foster transfer

(Peng et al., 2017; Sadeghi and Levine, 2017; Tobin et al.,

2017a). By carefully selecting the sensing modalities and

by randomizing most aspects of our simulated environment

we are able to train policies that are less likely to overfit to

a specific simulated environment and more likely to trans-

fer successfully to the physical robot.

4.1. Observations

We give the control policy observations of the fingertips

using PhaseSpace markers and the object pose either from

PhaseSpace markers or the vision-based pose estimator.

Although the Shadow Dexterous Hand contains a broad

array of built-in sensors, we specifically avoided providing

these as observations to the policy because they are subject

to state-dependent noise that would have been difficult to

model in the simulator. For example, the fingertip tactile

sensor measures the pressure of a fluid stored in a balloon

inside the fingertip, which correlates with the force applied

to the fingertip but also with a number of confounding vari-

ables, including atmospheric pressure, temperature, and the

shape of the contact and intersection geometry. Although it

is straightforward to determine the existence of contacts in

the simulator, it would be difficult to model the distribution

of sensor values. Similar considerations apply to the joint

angles measured by Hall effect sensors, which are used by

the low-level controllers but not provided to the policy due

to their tendency to be noisy and hard to calibrate.

4.2. Randomizations

Following previous work on domain randomization (Peng

et al., 2017; Sadeghi and Levine, 2017; Tobin et al.,

2017a), we randomize most of the aspects of the simulated

environment in order to learn both a policy and a vision

model that generalizes to reality. We overall found that it is

important to center randomized parameters on reasonable

physical values of the actual setup, which we obtain via the

previously described calibration step. Randomizations also

allow us to model uncertainty: we typically randomize

parameters with high uncertainty (e.g., actuation para-

meters) more than parameters for which we have values

with low uncertainty (e.g., object dimensions).

4.2.1. Observation noise. To better mimic the kind of

noise we expect to experience in reality, we add Gaussian

noise to policy observations. In particular, we apply a cor-

related noise that is sampled once per episode as well as an

uncorrelated noise sampled at every timestep. Apart from

Gaussian correlated noise, we also add more structured

noise coming from inaccurate placement of the motion cap-

ture markers by computing the observations using slightly

misplaced markers in the simulator. The configuration of

noise levels is described in Table 1.

4.2.2. Physics randomizations. The physical parameters

are sampled at the beginning of every episode and held

fixed for the whole episode. We typically randomize around

8 The International Journal of Robotics Research 39(1)

values that we obtained through calibration. The full set of

randomized values are available in Table 2.

We also randomize the timing of environment steps.

Every environment step is simulated as 10 MuJoCo physics

simulator steps with Dt = 8ms + Exp(l), where Exp(l)
denotes the exponential distribution and the coefficient l is

uniformly sampled once per episode from the range

½1, 250, 10, 000�.

4.2.3. Unmodeled effects. The physical robot experiences

many effects that are not modeled by our simulation, e.g.,

motor backlash or motion capture occlusions. Here, we

briefly describe each randomization.

PhaseSpace tracking errors Noise aside, readings of

the motion capture markers from the PhaseSpace system

might be occasionally unavailable for a short period of time

due to instability of the service. To model such error in the

simulator, we mask the fingertip markers with a small

probability (0.2 per second) for 1 second so that the policy

has a chance to learn how to interact with the environment

while the system temporarily loses track of some markers.

Furthermore, the markers might be occluded while in

motion, causing a brief delay of readings of some fingertip

positions. In the simulator, a small weightless cuboid site
2

is attached to the back of each nail and we consider a mar-

ker occluded whenever a collision with the site is detected

as another finger or object is getting too close. If a finger-

tip marker is deemed occluded, we use its last available

position readings instead of the current one.

Action noise and delay We add correlated and uncor-

related Gaussian noise to all actions to account for an

imperfect actuation system. The detailed noise levels can

be found in Table 3. Moreover, the real system contains

many potential sources of delays between the time that

observations are sensed and actions are executed, from net-

work delay to the computation time of the neural network.

Therefore, we introduce a simple model of action delay to

the simulator. At the beginning of every episode we sample

for every actuator whether it is going to be delayed (with

probability 0:5) or not. The actions corresponding to

delayed actuator are delayed by one environment step, i.e.,

approximately 80 ms.

Backlash model The physical Shadow Dexterous

Hand is tendon-actuated, which causes a substantial amount

of backlash, while the MuJoCo model assumes direct actua-

tion on the joints. In order to account for it, we introduce a

simple model of backlash that modifies actions before they

are sent to MuJoCo. In particular, for every joint we have

two parameters that specify the amount of backlash in each

direction, and are denoted d�1 and d+ 1, as well as a time-

varying variable s denoting the current state of slack. We

obtained the values of d�1, d+ 1 through calibration. At the

beginning of every episode we sample the values of

d�1, d+ 1 from the Gaussian distribution centered around

the calibrated values with the standard deviation of 0:1. Let

ain 2 ½�1, 1� be an action specified by the policy. Our

backlash model works as follows: we compute the new

value of the slack variable s0= ½s + aindsgn(ain)Dt�+ 1
�1 , com-

pute the scaling factor a = 1� jsgn(ain)�sj
js0�sj+ e

h i1

0
, where

e = 10�12 is a constant used for numerical stability, and

finally multiply the action by a: aout = aain.

Random forces To represent unmodeled dynamics,

we sometimes apply random forces to the object. The prob-

ability p that a random force is applied is sampled at the

beginning of the episode from the loguniform distribution

between 0:1% and 10%. Then, at every timestep, with

probability p we apply a random force from the three-

dimensional Gaussian distribution with the standard devia-

tion equal to 1 m/s2 times the mass of the object on each

coordinate and decay the force with a coefficient of 0:99

per 80 ms.

4.2.4. Visual appearance randomizations. We randomize

the following aspects of the rendered scene: camera posi-

tions and intrinsics, lighting conditions, the pose of the

hand and object, and the materials and textures for all

objects in the scene. Figure 6 depicts some examples of

these randomized environments.

Table 1. Standard deviation of applied Gaussian observation

noise.

Observation Correlated Uncorrelated

Fingertips positions 61 mm 62 mm
Object position 65 mm 61 mm
Object orientation 60:1 rad 60:1 rad
Fingertip marker positions 63 mm
Hand base marker position 61 mm

Table 2. Ranges of physics parameter randomizations.

Parameter Scaling factor range

Object dimensions uniform(½0:95, 1:05�)
Object and robot link masses uniform(½0:5, 1:5�)
Surface friction coefficients uniform(½0:7, 1:3�)
Robot joint damping coefficients loguniform(½0:3, 3:0�)
Actuator force gains (P term) loguniform(½0:75, 1:5�)

Parameter Additive term range

Joint limits N (0, 0:15) rad
Gravity vector (per coordinate) N (0, 0:4) m/s2

Table 3. Standard deviation of action noise.

Noise type Percentage of range

Uncorrelated additive 5%
Correlated additive 1.5%
Uncorrelated multiplicative 1.5%

OpenAI et al. 9

The materials and textures are randomized for every

visible object in the scene. We randomize the hue, satura-

tion, and value for the object faces around calibrated values

from real-world measurements. The color of the robot is

uniformly randomized. Material properties such as glossi-

ness and shininess are randomized as well. Camera position

and orientation are slightly randomized around values cali-

brated to real-world locations. Lights are randomized indi-

vidually, and intensities are scaled based on a randomly

drawn total intensity. After rendering the scene to images

from the three separate cameras, additional augmentation is

applied. The images are linearly normalized to have zero

mean and unit variance. Then the image contrast is rando-

mized, and finally per-pixel Gaussian noise is added.

Details are given in Table 4.

5. Learning control policies from state

We use the previously described distribution over rando-

mized simulations to train a single control policy using RL.

Since we optimize for performance over all randomiza-

tions, the policy cannot overfit to a single variant of our

simulation, thus making it transferable to the physical

robot. However, since the policy has to handle a large num-

ber of different variants of the same problem, we propose

to use a recurrent policy with access to memory. We further

use a distributed RL system in order to make solving this

challenging problem tractable. Both the policy architecture

and our training procedure using our distributed system are

described in this section.

5.1. Policy architecture

Many of the randomizations we employ persist across an

episode, and thus it should be possible for a memory

augmented policy to identify properties of the current envi-

ronment and adapt its own behavior accordingly. For

instance, initial steps of interaction with the environment

can reveal the weight of the object or how fast the index fin-

ger can move. We therefore represent the policy as a recur-

rent neural network with memory, namely an LSTM

(Hochreiter and Schmidhuber, 1997) with an additional hid-

den layer with ReLU (Nair and Hinton, 2010) activations

inserted between inputs and the LSTM.

The policy is trained with PPO (Schulman et al., 2017).

PPO requires the training of two networks: a policy

Fig. 6. Simulations with different randomized visual appearances. Rows correspond to the renderings from the same camera, and

columns correspond to renderings from three separate cameras that are simultaneously fed into the neural network.

Table 4. Ranges of vision randomizations.

Randomization type Range

Number of cameras 3
Camera position 6 1.5 mm
Camera rotation 0–38 around a random axis
Camera field of view 6 18
Robot material colors uniform over RGB values
Robot material metallic level 5–25%a

Robot material glossiness level 0–100%a

Object material hue 6 1%
Object material saturation 6 15%
Object material value 6 15%
Object metallic level 5–15%a

Object glossiness level 5–15%a

Number of lights 4–6
Light position uniform over

upper half-sphere
Light relative intensity 1–5
Total light intensity 0–15a

Image contrast adjustment 50–150%
Additive per-pixel Gaussian noise 6 10%

aIn units used by Unity. See https://unity3d.com/learn/tutorials/s/

graphics.

10 The International Journal of Robotics Research 39(1)

https://unity3d.com/learn/tutorials/s/graphics
https://unity3d.com/learn/tutorials/s/graphics

network, which maps observations to actions; and a value

network, which predicts the discounted sum of future

rewards starting from a given state. Both networks have the

same architecture but have independent parameters. The

network architecture is depicted in Figure 7.

Since the value network is only used during training, we

use an Asymmetric Actor–Critic (Pinto et al., 2017a)

approach. Asymmetric Actor–Critic exploits the fact that

the value network can have access to information that is

not available on the real robot system. This includes noise-

less observation and additional observations such as joint

angles and angular velocities, which we cannot sense reli-

ably but which are readily available in simulation during

training. The additional input potentially simplifies the

problem of learning good value estimates since less infor-

mation needs to be inferred.

We also normalize all observations given to the policy

and value networks with running means and standard devia-

tions. We then clip observations such that they are within

five standard deviations of the mean. We normalize the

advantage estimates within each minibatch. We also nor-

malize targets for the value function with running statistics.

The list of inputs fed to both networks can be found in

Table 5.

5.2. Distributed training with Rapid

We use the same distributed implementation of PPO that

was used to train OpenAI Five (OpenAI, 2018) without any

modifications. Overall, we found that PPO scales up easily

and requires little hyperparameter tuning. The architecture

of our distributed training system is depicted in Figure 8.

In our implementation, a pool of 384 worker machines,

each with 16 CPU cores, generate experience by rolling

out the current version of the policy in a sample from the

previously described distribution of randomized simula-

tions. Workers download the newest policy parameters

from the optimizer at the beginning of every epoch, gener-

ate training episodes, and send the generated episodes back

to the optimizer. The communication between the optimizer

and workers is implemented using the Redis in-memory

data store. We use multiple Redis instances for load-balan-

cing, and workers are assigned to an instance randomly.

This setup allows us to generate about 2 years of simulated

experience per hour.

The optimization is performed on a single machine with

eight GPUs. The optimizer threads pull down generated

experience from Redis and then stage it to their respective

GPU’s memory for processing. After computing gradients

locally, they are averaged across all threads using MPI,

which we then use to update the network parameters.

The hyperparameters that we used can be found in

Table 6.

6. State estimation from vision

The policy that we described in the previous section takes

the object’s position as input and requires a motion capture

system for tracking the object on the physical robot. This is

undesirable because tracking objects with such a system is

only feasible in a lab setting where markers can be placed

on each object. Since our ultimate goal is to build robots

for the real world that can interact with arbitrary objects,

sensing them using vision is an important building block.

In this work, we therefore wish to infer the object’s

pose from vision alone. Similar to the policy, we train

this estimator only on synthetic data coming from the

simulator.

Fig. 7. Policy network (left) and value network (right). Each

network consists of an input normalization, a single fully

connected hidden layer with 1,024 units and ReLU activations

(Nair and Hinton, 2010), and a recurrent LSTM block

(Hochreiter and Schmidhuber, 1997) with 512 units. The

normalization block subtracts the mean value of each coordinate

(across all data gathered so far), divides by the standard

deviation, and removes outliers by clipping. There is no weight

sharing between the two networks. The goal provided to the

policy is the noisy relative target orientation (see Table 5 for

details).

Table 5. Observations of the policy and value networks,

respectively. ‘‘Noisy’’ means that observation noise has been

applied as described in Section 4.

Input Dimension Policy Value

Fingertip positions 15 ×
Noisy fingertip positions 15 � ×
Object position 3 × �
Noisy object position 3 � ×
Object orientation 4 × a �
Target orientation 4 × �
Relative target orientation 4 × �
Noisy relative target orientation 4 � ×
Hand joints angles 24 × �
Hand joints velocities 24 × �
Object velocity 3 × �
Object angular velocity 4 × �

aWe accidentally did not include the current object orientation in the

policy observations but found that it makes little difference since this

information is indirectly available through the relative target orientation.

OpenAI et al. 11

6.1. Model architecture

To resolve ambiguities and to increase robustness, we use

three RGB cameras mounted with differing viewpoints of

the scene. The recorded images are passed through a convo-

lutional neural network (CNN), which is depicted in Figure

9. The network predicts both the position and the orienta-

tion of the object. During execution of the control policy on

the physical robot, we feed the pose estimator’s prediction

into the policy, which in turn produces the next action. The

hyperparameters for the vision model architecture are listed

in Table 7.

6.2. Training

We run the trained policy in the simulator until we gather

one million states. We then train the vision network by

Table 6. Hyperparameters used for PPO.

Hyperparameter Value

Hardware configuration 8 GPUs + 6,144 CPU coresa

Action distribution categorical (11 bins per coordinate)
Discount factor g 0:998
GAE l 0:95
Entropy regularization 0:01
Clipping e 0:2
Optimizer Adam (Kingma and Ba, 2014)
Learning rate 0:0003
Batch size (per GPU) 80,000 chunks × 10 transitions
Minibatch size (per GPU) 25,600 transitions
Minibatches per step 60

aWe use NVIDIA V100 GPUs for policy training.

Fig. 8. Our distributed training infrastructure in Rapid.

Individual threads are depicted as blue squares. Worker machines

randomly connect to a Redis server from which they pull new

policy parameters and to which they send new experience. The

optimizer machine has one MPI process for each GPU, each of

which gets a dedicated Redis server. Each process has a Puller

thread which pulls down new experience from Redis into a

buffer. Each process also has a Stager thread which samples

minibatches from the buffer and stages them on the GPU. Finally,

each Optimizer thread uses a GPU to optimize over a minibatch

after which gradients are accumulated across threads and new

parameters are sent to the Redis servers.

Fig. 9. Vision network architecture. Camera images are passed

through a convolutional feature stack that consists of two

convolutional layers, max-pooling, 4 ResNet blocks (He et al.,

2016), and spatial softmax (SSM) (Finn et al., 2015) layers with

shared weights between the feature stacks for each camera. The

resulting representations are flattened, concatenated, and fed to a

fully connected network. All layers use ReLU (Nair and Hinton,

2010) activation function. Linear outputs from the last layer form

the estimates of the position and orientation of the object.

Table 7. Hyperparameters for the vision model architecture.

Layer Details

Input RGB Image 200× 200× 3
Conv2D 32 filters, 5× 5, stride 1, no padding
Conv2D 32 filters, 3× 3, stride 1, no padding
Max pooling 3× 3, stride 3
ResNet 1 block, 16 filters, 3× 3, stride 3
ResNet 2 blocks, 32 filters, 3× 3, stride 3
ResNet 2 blocks, 64 filters, 3× 3, stride 3
ResNet 2 blocks, 64 filters, 3× 3, stride 3
Spatial Softmax —
Flatten —
Concatenate All 3 image towers combined
Fully connected 128 units
Fully connected Output dimension (3 position + 4 rotation)

12 The International Journal of Robotics Research 39(1)

minimizing the mean squared error between the normalized

prediction and the ground-truth with minibatch gradient

descent. For each minibatch, we render the images with

randomized appearance before feeding them to the net-

work. Moreover, we augment the data by modifying the

object pose. More specifically, we leave the object pose as

is with 20% probability, rotate the object by 908 around its

main axes with 40% probability, and ‘‘jitter’’ the object by

adding Gaussian noise to both the position and rotation

independently with 40% probability. We use 2 GPUs for

rendering and 1 GPU for running the network and training.

The hyperparameters used for the vision model training are

listed in Table 8.

7. Results

In this section, we evaluate the proposed system. We start

by deploying the system on the physical robot, and evaluat-

ing its performance on in-hand manipulation of a block and

an octagonal prism. We then focus on individual aspects of

our system: we conducted an ablation study of the impor-

tance of randomizations and policies with memory

capabilities in order to successfully transfer. Next, we con-

sider the sample complexity of our proposed method.

Finally, we investigate the performance of the proposed

vision pose estimator and show that using only synthetic

images is sufficient to achieve good performance.

7.1. Qualitative results

During deployment on the robot as well as in simulation,

we note that our policies naturally exhibit many of the

grasps found in humans (see Figure 10). Furthermore, the

policy also naturally discovers many strategies for dexter-

ous in-hand manipulation described by the robotics com-

munity (Ma and Dollar, 2011) such as finger pivoting,

finger gaiting, multi-finger coordination, the controlled use

of gravity, and coordinated application of translational and

torsional forces to the object. It is important to note that we

did not incentivize this directly: we do not use any human

demonstrations and do not encode any prior into the reward

function.

For precision grasps, our policy tends to use the little

finger instead of the index or middle finger. This may be

because the little finger of the Shadow Dexterous Hand has

an extra DoF compared with the index, middle, and ring

fingers, making it more dexterous. In humans, the index

and middle finger are typically more dexterous. This means

that our system can rediscover grasps found in humans, but

adapt them to better fit the limitations and abilities of its

own body.

We observe another interesting parallel between humans

and our policy in finger pivoting, which is a strategy in

which an object is held between two fingers and rotate

around this axis. It was found that young children have not

yet fully developed their motor skills and therefore tend to

rotate objects using the proximal or middle phalanges of a

finger (Pehoski et al., 1997). Only later in their lives do

they switch to primarily using the distal phalanx, which is

Fig. 10. Different grasp types learned by our policy. From top left to bottom right: Tip Pinch grasp, Palmar Pinch grasp, Tripod

grasp, Quadpod grasp, 5-Finger Precision grasp, and a Power grasp. Classified according to Feix et al. (2016).

Table 8. Hyperparameters used for the vision model training.

Hyperparameter Value

Hardware configuration 3 GPUs + 32 CPU coresa

Optimizer Adam (Kingma and Ba, 2014)
Learning rate 0:0005, halved every

20,000 batches
Minibatch size 64× 3 = 192 RGB images
Image size 200× 200 pixels
Weight decay regularization 0:001
Number of training batches 400,000

aWe use NVIDIA P40 GPUs for vision training. Two GPUs are used for

rendering and one for the optimization.

OpenAI et al. 13

the dominant strategy found in adults. It is interesting that

our policy also typically relies on the distal phalanx for fin-

ger pivoting.

During experiments on the physical robot we noticed

that the most common failure mode was dropping the object

while rotating the wrist pitch joint down. Moreover, the ver-

tical joint was the most common source of robot breakages,

probably because it handles the biggest load. Given these

difficulties, we also trained a policy with the wrist pitch

joint locked.
3

We noticed that not only does this policy

transfer better to the physical robot but it also seems to han-

dle the object much more deliberately with many of the

above grasps emerging frequently in this setting.

Other failure modes that we observed were dropping the

object shortly after the start of a trial (which may be

explained by incorrectly identifying some aspect of the

environment) and getting stuck because the edge of an

object got caught in a screw hole (which we do not model).

We encourage the reader to watch the accompanying

video to get a better sense of the learned behaviors (please

refer to the supplement material).

7.2. Quantitative results

In this section, we evaluate our results quantitatively. To do

so, we measure the number of consecutive successful rota-

tions until the object is either dropped, a goal has not been

achieved within 80 seconds, or until 50 rotations are

achieved. All results are available in Table 9.

Our results allow us to directly compare the perfor-

mance of each task in simulation and on the real robot. For

instance, manipulating a block in simulation achieves a

median of 50 successes while the median on the physical

setup is 13. This is the overall trend that we observe: even

though randomizations and calibration narrow the reality

gap, it still exists and performance on the real system is

worse than in simulation. We discuss the importance of

individual randomizations in greater detail in Section 7.3.

When using vision for pose estimation, we achieve

slightly worse results both in simulation and on the real

robot. This is because even in simulation, our model has to

perform transfer because it was only trained on images ren-

dered with Unity but we use MuJoCo rendering for evalua-

tion in simulation (thus making this a sim-to-sim transfer

problem). On the real robot, our vision model does slightly

worse compared with pose estimation with PhaseSpace.

However, the difference is surprisingly small, suggesting

that training the vision model only in simulation is enough

to achieve good performance on the real robot. For vision

pose estimation, we found that it helps to use a white back-

ground and to wipe the object with a tack cloth between

trials to remove detritus from the robot hand.

We also evaluate the performance on a second type of

object, an octagonal prism. To do so, we finetuned a

trained block rotation control policy to the same rando-

mized distribution of environments but with the octagonal

prism as the target object instead of the block. Even though

our randomizations were all originally designed for the

block, we were able to learn successful policies that trans-

fer. Compared with the block, however, there is still a per-

formance gap both in simulation and on the real robot.

This suggests that further tuning is necessary and that the

introduction of additional randomization could improve

transfer to the physical system.

We also briefly experimented with a sphere but failed to

achieve more than a few rotations in a row, perhaps because

we did not randomize any MuJoCo parameters related to

rolling behavior or because rolling objects are much more

sensitive to unmodeled imperfections in the hand such as

screw holes. It would also be interesting to train a unified

policy that can handle multiple objects, but we leave this

for future work.

Obtaining the results in Table 9 proved to be challen-

ging due to robot breakages during experiments. Repairing

the robot takes time and often changes some aspects of the

system, which is why the results were obtained at different

times. In general, we found that problems with hardware

breakage were one of the key challenges we had to over-

come in this work.

Table 9. The number of successful consecutive rotations in simulation and on the physical robot. All policies were trained on

environments with all randomizations enabled. We performed 100 trials in simulation and 10 trails per policy on the physical robot.

Each trial terminates when the object is dropped, 50 rotations are achieved or a timeout is reached. For physical trials, results were

taken at different times on the physical robot.

Simulated task Mean Median Individual trials (sorted)

Block (state) 43:4613:8 50 -
Block (state, locked wrist) 44:2613:4 50 -
Block (vision) 30:0610:3 33 -
Octagonal prism (state) 29:0619:7 30 -

Physical task

Block (state) 18:8617:1 13 50 41 29 27 14 12 6 4 4 1
Block (state, locked wrist) 26:4613:4 28:5 50 43 32 29 29 28 19 13 12 9
Block (vision) 15:2614:3 11:5 46 28 26 15 13 10 8 3 2 1
Octagonal prism (state) 7:867:8 5 27 15 8 8 5 5 4 3 2 1

14 The International Journal of Robotics Research 39(1)

7.3. Ablation of randomizations

In Section 4.2 we detail a list of parameters we randomize

and effects we add that are not already modeled in the

simulator. In this section, we show that these additions to

the simulator are vital for transfer. We train five separate

RL policies in environments with various randomizations

held out: all randomizations (baseline), no observation

noise, no unmodeled effects, no physics randomizations,

and no randomizations (basic simulator, i.e., no domain

randomization).

Adding randomizations or effects to the simulation does

not come without cost; in Figure 11 we show the training

performance in simulation for each environment plotted

over wall-clock time. Policies trained in environments with

a more difficult set of randomizations, e.g., all randomiza-

tions and no observation noise, converge much slower and

therefore require more compute and simulated experience

to train in. However, when deploying these policies on the

real robot we find that training with randomizations is

critical for transfer. Table 10 summarizes our results.

Specifically, we find that training with all randomizations

leads to a median of 13 consecutive goals achieved, while

policies trained with no randomizations, no physics rando-

mizations, and no unmodeled effects achieve only median

of 0, 2, and 2 consecutive goals, respectively.

When holding out observation noise randomizations,

the performance gap is less clear than for the other

randomization groups. We believe that is because our

motion capture system has very little noise. However, we

still include this randomization because it is important

when the vision and control policies are composed. In this

case, the pose estimate of the object is much more noisy,

and, therefore, training with observation noise should be

more important. The results in Table 10 suggest that this is

indeed the case, with a drop from median performance of

11:5 to 3:5 if the observation noise randomizations are

withheld.

The vast majority of training time is spent making the

policy robust to different physical dynamics. Learning to

rotate an object in simulation without randomizations

requires about 3 years of simulated experience, while

achieving the same performance in a fully randomized

simulation requires about 100 years of experience. This

corresponds to a wall-clock time of around 1.5 hours and

50 hours in our simulation setup, respectively.

7.4. Effect of memory in policies

We find that using memory is helpful to achieve good per-

formance in the randomized simulation. In Figure 12 we

show the simulation performance of three different RL

architectures: the baseline which has a LSTM policy and

value function, a feed-forward (FF) policy and a LSTM

value function, and both a FF policy and FF value function.

We include results for a FF policy with LSTM value func-

tion because it was plausible that having a more expressive

value function would accelerate training, allowing the pol-

icy to act robustly without memory once it converged.

However, we see that the baseline outperforms both var-

iants, indicating that it is beneficial to have some amount

of memory in the actual policy.

Table 10. The number of successful consecutive rotations on the physical robot of five policies trained separately in environments

with different randomizations held out. The first five rows use PhaseSpace for object pose estimation and were run on the same robot

at the same time. Trials for each row were interleaved in case the state of the robot changed during the trials. The last two rows were

measured at a different time from the first five and used the vision model to estimate the object pose.

Training environment Mean Median Individual trials (sorted)

All randomizations (state) 18:8617:1 13 50 41 29 27 14 12 6 4 4 1
No randomizations (state) 1:161:9 0 6 2 2 1 0 0 0 0 0 0
No observation noise (state) 15:1614:5 8:5 45 35 23 11 9 8 7 6 6 1
No physics randomizations (state) 3:562:5 2 7 7 7 3 2 2 2 2 2 1
No unmodeled effects (state) 3:564:8 2 16 7 3 3 2 2 1 1 0 0
All randomizations (vision) 15:2614:3 11:5 46 28 26 15 13 10 8 3 2 1
No observation noise (vision) 5:966:6 3:5 20 12 11 6 5 2 2 1 0 0

Fig. 11. Performance when training in environments with groups

of randomizations held out. All runs show exponential moving

averaged performance and 90% confidence interval over a

moving window of the RL agent in the environment it was

trained. We see that training is faster in environments that are

easier, e.g., no randomizations and no unmodeled effects. We

only show one seed per experiment; however, in general we have

noticed almost no instability in training.

OpenAI et al. 15

Moreover, we found out that LSTM state is predictive of

the environment randomizations. In particular, we discov-

ered that the LSTM hidden state after 5 seconds of simu-

lated interaction with the block allows to predict whether

the block is bigger or smaller than average in 80% of

cases.

To investigate the importance of memory-augmented

policies for transfer, we evaluate the same three network

architectures as described above on the physical robot.

Table 11 summarizes the results. Our results show that hav-

ing a policy with access to memory yields a higher median

of successful rotations, suggesting that the policy may use

memory to adapt to the current environment.
4

Qualitatively

we also find that FF policies often get stuck and then run

out of time.

In Figure 13 we show results when varying the number

of CPU cores and GPUs used in training, where we keep

the batch size per GPU fixed such that overall batch size is

directly proportional to number of GPUs. Because we

could linearly slow down training by simply using less

CPU machines and having the GPUs wait longer for data,

it is more informative to vary the batch size. We see that

our default setup with an 8 GPU optimizer and 6,144 roll-

out CPU cores reaches 20 consecutive achieved goals

approximately 5.5 times faster than a setup with a 1 GPU

optimizer and 768 rollout cores. Furthermore, when using

16 GPUs we reach 40 consecutive achieved goals roughly

1.8 times faster than when using the default 8 GPU setup.

Scaling up further results in diminishing returns, but it

seems that scaling up to 16 GPUs and 12,288 CPU cores

gives close to linear speedup.

7.5. Vision performance

In Table 9 we show that we can combine a vision-based

pose estimator and the control policy to successfully trans-

fer to the real robot without embedding sensors in the target

object. To better understand why this is possible, we evalu-

ate the precision of the pose estimator on both synthetic

and real data. Evaluating the system in simulation is easy

because we can generate the necessary data and have access

Table 11. The number of successful consecutive rotations on the physical robot of three policies with different network architectures

trained on an environment with all randomizations. Results for each row were collected at different times on the physical robot.

Network architecture Mean Median Individual trials (sorted)

LSTM policy/LSTM value (state) 18:8617:1 13 50 41 29 27 14 12 6 4 4 1
FF policy/LSTM value (state) 4:764:1 3:5 15 7 6 5 4 3 3 2 2 0
FF policy/FF value (state) 4:664:3 3 15 8 6 5 3 3 2 2 2 0

Fig. 12. Performance when comparing LSTM and FF policy and

value function networks. We train on an environment with all

randomizations enabled. All runs show exponential moving

averaged performance and 90% confidence interval over a

moving window for a single seed. We find that using recurrence

in both the policy and value function helps to achieve good

performance in simulation.

Fig. 13. We show performance in simulation when varying the

amount of compute used during training versus wall-clock

training time (top) and years of experience consumed (bottom).

Batch size used is proportional to the number of GPUs used, such

that time per optimization step should remain constant apart from

slow downs due to gradient syncing across optimizer machines.

16 The International Journal of Robotics Research 39(1)

to the precise object’s pose to compare against. In contrast,

real images had to be collected by running a state-based

policy on our robot platform. We use PhaseSpace to esti-

mate the object’s pose, which is therefore subject to errors.

The resulting collected test set consists of 992 real sam-

ples.
5

For simulation, we use test sets rendered using Unity

and MuJoCo. The MuJoCo renderer was not used during

training, thus the evaluation can be also considered as an

instance of sim-to-sim transfer. Table 12 summarizes our

results.

Our results show that the model achieves low error for

both rotation and position prediction when tested on syn-

thetic data.
6

On the images rendered with MuJoCo, there is

only a slight increase in error, suggesting successful sim-

to-sim transfer. The error further increases on the real data,

which is due to the gap between simulation and reality but

also because the ground truth is more challenging to obtain

due to noise, occlusions, imperfect marker placement, and

delayed sensor readings. Despite that the prediction error is

bigger than the observation noise used during policy train-

ing (Table 1), the vision-based policy performs well on the

physical robot (Table 9).

8. Related work

In order to make it easier to understand the state of the art

in dexterous in-hand manipulation we gathered a represen-

tative set of videos from related work, and created a playlist

out of them (see the supplemental material).

8.1. Dexterous manipulation

Dexterous manipulation has been an active area of research

for decades (Bicchi, 2000; Fearing, 1986; Ma and Dollar,

2011; Okamura et al., 2000; Rus, 1999). Many different

approaches and strategies have been proposed over the

years. This includes rolling (Bicchi and Sorrentino, 1995;

Cherif and Gupta, 1999; Doulgeri and Droukas, 2013; Han

et al., 1997; Han and Trinkle, 1998), sliding (Cherif and

Gupta, 1999; Shi et al., 2017), finger gaiting (Han and

Trinkle, 1998), finger tracking (Rus, 1992), pushing (Dafle

and Rodriguez, 2017), and re-grasping (Dafle et al., 2014;

Tournassoud et al., 1987). For some hand types, strategies

such as pivoting (Aiyama et al., 1993), tilting (Erdmann

and Mason, 1988), tumbling (Sawasaki and Inoue, 1991),

tapping (Huang and Mason, 2000), two-point manipulation

(Abell and Erdmann, 1995), and two-palm manipulation

(Erdmann, 1998) are also options. These approaches use

planning and therefore require exact models of both the

hand and object. After computing a trajectory, the plan is

typically executed open-loop, thus making these methods

prone to failure if the model is not accurate.
7

Other approaches take a closed-loop approach to dexter-

ous manipulation and incorporate sensor feedback during

execution, e.g., tactile sensing (Li et al., 2014a,b, 2013;

Tahara et al., 2010). While those approaches allow mis-

takes to be corrected at runtime, they still require reason-

able models of the robot kinematics and dynamics, which

can be challenging to obtain for under-actuated hands with

many DoFs.

Deep RL has also been used successfully to learn com-

plex manipulation skills on physical robots. Guided policy

search (Levine and Koltun, 2013; Levine et al., 2015) learns

simple local policies directly on the robot and distills them

into a global policy represented by a neural network. An

alternative is to use many physical robots simultaneously in

order to be able to collect sufficient experience (Gu et al.,

2017; Kalashnikov et al., 2018; Levine et al., 2018).

8.2. Dexterous in-hand manipulation

Since a very large body of past work on dexterous manipu-

lation exists, we limit the more detailed discussion to set-

ups that are most closely related to our work on dexterous

in-hand manipulation.

Mordatch et al. (2012) and Bai and Liu (2014) proposed

methods to generate trajectories for complex and dynamic

in-hand manipulation, but results were limited to simula-

tion. There has also been significant progress in learning

complex in-hand dexterous manipulation (Barth-Maron

et al., 2018; Plappert et al., 2018) and even tool use

(Rajeswaran et al., 2017) using deep RL, but those

approaches were also only evaluated in simulation.

In contrast, multiple authors learn policies for dexterous

in-hand manipulation directly on the robot. van Hoof et al.

(2015) learned in-hand manipulation for a simple three-

fingered gripper whereas Kumar et al. (2016a,b) and Falco

et al. (2018) learned such policies for more complex huma-

noid hands. While learning directly on the robot means that

modeling the system is not an issue, it also means that

learning has to be performed with only a handful of trials.

This is only possible when learning very simple (e.g., lin-

ear or local) policies that, in turn, do not exhibit sophisti-

cated behaviors.

8.3. Sim-to-real transfer

Domain adaption methods (Gupta et al., 2017; Tzeng

et al., 2015), progressive nets (Rusu et al., 2017), and

learning inverse dynamics models (Christiano et al., 2016)

were all proposed to help with sim-to-real transfer. All of

these methods assume access to real data. An alternative

Table 12. Performance of a vision based pose estimator on

synthetic and real data.

Test set Rotation error Position error

Rendered images (Unity) 2:71861:62 3:12mm61:52
Rendered images (MuJoCo) 3:23862:91 3:71mm64:07
Real images 5:01862:47 9:27mm64:02

OpenAI et al. 17

approach is to make the policy itself more adaptive during

training in simulation using domain randomization.

Domain randomization was used to transfer object pose

estimators (Tobin et al., 2017a) and vision policies for fly

drones (Sadeghi and Levine, 2017). This idea has also

been extended to dynamics randomization (Antonova

et al., 2017; Tan et al., 2018; Yu et al., 2017) to learn a

robust policy that transfers to similar environments but

with different dynamics. Domain randomization was also

used to plan robust grasps (Mahler et al., 2017a,b; Tobin

et al., 2017b) and to transfer learned locomotion (Tan

et al., 2018) and grasping (Zhu et al., 2018) policies for

relatively simple robots. Pinto et al. (2017b,c) proposed the

use of adversarial training to obtain more robust policies

and showed that it also helps with transfer to physical

robots.

9. Conclusion

In this work, we have demonstrated that in-hand manipula-

tion skills learned with RL in a simulator can achieve an

unprecedented level of dexterity on a physical five-fingered

hand. This is possible due to extensive randomizations of

the simulator, large-scale distributed training infrastructure,

policies with memory, and a choice of sensing modalities

that can be modeled in the simulator. Our results have

demonstrated that, contrary to a common belief, contempo-

rary deep RL algorithms can be applied to solving complex

real-world robotics problems that are beyond the reach of

existing non-learning-based approaches.

Acknowledgements

We would like to thank Rachel Fong, Ankur Handa, and a former

OpenAI employee for exploratory work and helpful discussions, a

former OpenAI employee for advice and some repairs on hard-

ware and contributions to the low-level PID controller, Pieter

Abbeel for helpful discussions, Gavin Cassidy and Luke Moss for

their support in maintaining the Shadow Hand, and everybody at

OpenAI for their help and support. We would also like to thank

the following people for providing feedback on earlier versions of

this manuscript: Pieter Abbeel, Joshua Achiam, Tamim Asfour,

Aleksandar Botev, Greg Brockman, Rewon Child, Jack Clark,

Marek Cygan, Harri Edwards, Ron Fearing, Ken Goldberg, Anna

Goldie, Edward Mehr, Azalia Mirhoseini, Lerrel Pinto, Aditya

Ramesh, Ian Rust, John Schulman, Shubho Sengupta, and Ilya

Sutskever.

Funding

This research received no specific grant from any funding agency

in the public, commercial, or not-for-profit sectors.

Supplementary material

A video summarizing our work can be found at: https://youtu.be/

jwSbzNHGflM.

We have also made available the uncut and real-time video foo-

tage of a trial in which the robot hand successfully performed 50

consecutive rotations: https://youtu.be/DKe8FumoD4E.

We also gathered a representative set of videos from related

work to illustrate the previous state of the art in dexterous manip-

ulation: https://bit.ly/2uOK21Q.

Finally, we have released a supplementary blog post that sum-

marizes the most important findings in an accessible manner:

https://blog.openai.com/learning-dexterity/.

Notes

1. The environments we consider in this article are only partially

observable.

2. A site represents a location of interest relative to the body

frame in MuJoCo. See also http://mujoco.org/book/

modeling.html#site.

3. We had trouble training in this environment from scratch, so we

fine-tuned a policy trained in the original environment instead.

4. When training in an environment with no randomizations, the

FF and LSTM policy converge to the same performance in

the same amount of time. This shows that a FF policy has the

capacity and observations to solve the non-randomized task

but cannot solve it reliably with all randomizations, plausibly

because it cannot adapt to the environment.

5. A sample contains three images of the same scene. We

removed a few samples that had no object in them after it

being dropped.

6. For comparison, PhaseSpace is rated for a position accuracy

of around 20 mm but requires markers and a complex setup.

7. Some methods use iterative re-planning to partially mitigate

this issue.

ORCID iDs

Arthur Petron https://orcid.org/0000-0001-9664-5097

Matthias Plappert https://orcid.org/0000-0002-0751-8094

References

Abadi M, Agarwal A, Barham P, et al. (2016) Tensorflow: Large-

scale machine learning on heterogeneous distributed systems.

arXiv preprint arXiv:1603.04467.

Abell T and Erdmann MA (1995) Stably supported rotations of a

planar polygon with two frictionless contacts. In: Proceedings

of IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS 1995), Pittsburgh, PA, 5–9 August 1995,

pp. 411–418.

Aiyama Y, Inaba M and Inoue H (1993) Pivoting: A new method

of graspless manipulation of object by robot fingers. In: Pro-

ceedings of 1993 IEEE/RSJ International Conference on Intel-

ligent Robots and Systems (IROS 1993), Tokyo, Japan, 26–30

July 1993, pp. 136–143.

Antonova R, Cruciani S, Smith C and Kragic D. (2017) Reinforce-

ment learning for pivoting task. CoRR abs/1703.00472.

Bai Y and Liu CK. (2014) Dexterous manipulation using both

palm and fingers. In: 2014 IEEE International Conference on

Robotics and Automation (ICRA 2014), Hong Kong, China,

31 May–7 June 2014, pp. 1560–1565.

Barth-Maron G, Hoffman MW, Budden D, et al. (2018) Distribu-

ted distributional deterministic policy gradients. CoRR abs/

1804.08617.

18 The International Journal of Robotics Research 39(1)

https://youtu.be/jwSbzNHGflM
https://youtu.be/jwSbzNHGflM
https://youtu.be/DKe8FumoD4E
https://bit.ly/2uOK21Q
https://blog.openai.com/learning-dexterity/
http://mujoco.org/book/modeling.html#site
http://mujoco.org/book/modeling.html#site
https://orcid.org/0000-0001-9664-5097
https://orcid.org/0000-0002-0751-8094

Bertsekas DP. (2005) Dynamic Programming and Optimal Con-

trol, Vol. 1. Belmont, MA: Athena Scientific.

Bicchi A. (2000) Hands for dexterous manipulation and robust

grasping: A difficult road toward simplicity. IEEE Transac-

tions on Robotics and Automation 16(6): 652–662.

Bicchi A and Sorrentino R. (1995) Dexterous manipulation

through rolling. In: Proceedings of the 1995 International

Conference on Robotics and Automation, Nagoya, Aichi,

Japan, 21–27 May 1995, pp. 452–457.

Brockman G, Cheung V, Pettersson L, et al. (2016) OpenAI

GYM. CoRR abs/1606.01540.

Cherif M and Gupta KK. (1999) Planning quasi-static fingertip

manipulations for reconfiguring objects. IEEE Transactions

Robotics and Automation 15(5): 837–848.

Christiano PF, Shah Z, Mordatch I, et al. (2016) Transfer from

simulation to real world through learning deep inverse

dynamics model. CoRR abs/1610.03518.

Dafle NC and Rodriguez A. (2017) Sampling-based planning of

in-hand manipulation with external pushes. CoRR abs/

1707.00318.

Dafle NC, Rodriguez A, Paolini R, et al. (2014) Extrinsic dexter-

ity: In-hand manipulation with external forces. In: 2014 IEEE

International Conference on Robotics and Automation (ICRA

2014), Hong Kong, China, 31 May–7 June 2014, pp. 1578–

1585.

Doulgeri Z and Droukas L (2013) On rolling contact motion by

robotic fingers via prescribed performance control. In: 2013

IEEE International Conference on Robotics and Automation,

Karlsruhe, Germany, 6–10 May 2013, pp. 3976–3981.

Erdmann MA. (1998) An exploration of nonprehensile two-palm

manipulation. The International Journal of Robotics Research

17(5): 485–503.

Erdmann MA and Mason MT. (1988) An exploration of sensorless

manipulation. IEEE Journal of Robotics and Automation 4(4):

369–379.

Falco P, Attawia A, Saveriano M and Lee D. (2018) On policy

learning robust to irreversible events: An application to robotic

in-hand manipulation. IEEE Robotics and Automation Letters

3(3): 1482–1489.

Fearing RS (1986) Implementing a force strategy for object re-

orientation. In: Proceedings of the 1986 IEEE International

Conference on Robotics and Automation, San Francisco, CA,

7–10 April 1986, pp. 96–102.

Feix T, Romero J, Schmiedmayer HB, Dollar A and Kragic D.

(2016) The grasp taxonomy of human grasp types. IEEE

Transactions on Human–Machine Systems 46(1): 66–77.

Finn C, Tan XY, Duan Y, Darrell T, Levine S and Abbeel P.

(2015) Deep spatial autoencoders for visuomotor learning.

arXiv preprint arXiv:1509.06113.

Gu S, Holly E, Lillicrap TP and Levine S (2017) Deep reinforce-

ment learning for robotic manipulation with asynchronous off-

policy updates. In: 2017 IEEE International Conference on

Robotics and Automation (ICRA 2017), Singapore, 29 May–3

June 2017, pp. 3389–3396.

Gupta A, Devin C, Liu Y, Abbeel P and Levine S. (2017) Learn-

ing invariant feature spaces to transfer skills with reinforcement

learning. CoRR abs/1703.02949.

Han L, Guan Y, Li ZX, Qi S and Trinkle JC. (1997) Dextrous

manipulation with rolling contacts. In: Proceedings of the 1997

IEEE International Conference on Robotics and Automation,

Albuquerque, NM, 20–25 April 1997, pp. 992–997.

Han L and Trinkle JC. (1998) Dextrous manipulation by rolling

and finger gaiting. In: Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA-98), Leuven,

Belgium, 16–20 May 1998, pp. 730–735.

He K, Zhang X, Ren S and Sun J. (2016) Deep residual learning

for image recognition. In: 2016 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pp. 770–778.

Hochreiter S and Schmidhuber J. (1997) Long short-term memory.

Neural Computation 9(8): 1735–1780.

Huang WH and Mason MT. (2000) Mechanics, planning, and

control for tapping. The International Journal of Robotics

Research 19(10): 883–894.

Kalashnikov D, Irpan A, Pastor P, et al. (2018) QT-Opt: Scalable

Deep Reinforcement Learning for Vision-Based Robotic

Manipulation. ArXiv e-prints.

Kingma D and Ba J. (2014) Adam: A method for stochastic opti-

mization. arXiv preprint arXiv:1412.6980.

Kumar V, Gupta A, Todorov E and Levine S. (2016a) Learning

dexterous manipulation policies from experience and imitation.

CoRR abs/1611.05095.

Kumar V, Todorov E and Levine S. (2016b) Optimal control with

learned local models: Application to dexterous manipulation.

In: 2016 IEEE International Conference on Robotics and Auto-

mation (ICRA 2016), Stockholm, Sweden, 16–21 May 2016,

pp. 378–383.

Levine S and Koltun V. (2013) Guided policy search. In: Proceed-

ings of the 30th International Conference on Machine Learn-

ing (ICML 2013), Atlanta, GA, 16–21 June 2013, pp. 1–9.

Levine S, Pastor P, Krizhevsky A, Ibarz J and Quillen D. (2018)

Learning hand–eye coordination for robotic grasping with

deep learning and large-scale data collection. The Interna-

tional Journal of Robotics Research 37(4–5): 421–436.

Levine S, Wagener N and Abbeel P. (2015) Learning contact-rich

manipulation skills with guided policy search. In: IEEE Inter-

national Conference on Robotics and Automation (ICRA

2015), Seattle, WA, 26–30 May 2015, pp. 156–163.

Li M, Bekiroglu Y, Kragic D and Billard A (2014a) Learning of

grasp adaptation through experience and tactile sensing. In:

2014 IEEE/RSJ International Conference on Intelligent Robots

and Systems, Chicago, IL, 14–18 September 2014, pp. 3339–

3346.

Li M, Yin H, Tahara K and Billard A (2014b) Learning object-

level impedance control for robust grasping and dexterous

manipulation. In: 2014 IEEE International Conference on

Robotics and Automation (ICRA 2014), Hong Kong, China,

31 May–7 June 2014, pp. 6784–6791.

Li Q, Meier M, Haschke R, Ritter HJ and Bolder B. (2013) Rotary

object dexterous manipulation in hand: A feedback-based

method. IJMA 3(1): 36–47.

Ma RR and Dollar AM (2011) On dexterity and dexterous manip-

ulation. In: 15th International Conference on Advanced

Robotics: New Boundaries for Robotics (ICAR 2011), Tallinn,

Estonia, 20–23 June 2011, pp. 1–7.

Mahler J, Liang J, Niyaz S, et al. (2017a) Dex-net 2.0: Deep learning

to plan robust grasps with synthetic point clouds and analytic

grasp metrics. In: Robotics: Science and Systems XIII, Massachu-

setts Institute of Technology, Cambridge, MA, 12–16 July 2017.

Mahler J, Matl M, Liu X, Li A, Gealy DV and Goldberg K.

(2017b) Dex-net 3.0: Computing robust robot suction grasp

targets in point clouds using a new analytic model and deep

learning. CoRR abs/1709.06670.

OpenAI et al. 19

Marcin A, Bowen B, Maciek C, et al. (2018) OpenAI Five. https://

blog.openai.com/openai-five/.

Mordatch I, Popovic Z and Todorov E (2012) Contact-invariant

optimization for hand manipulation. In: Proceedings of the 2012

Eurographics/ACM SIGGRAPH Symposium on Computer Anima-

tion (SCA 2012), Lausanne, Switzerland, 2012, pp. 137–144.

Nair V and Hinton GE. (2010) Rectified linear units improve

restricted Boltzmann machines. In: Proceedings of the 27th

International Conference on Machine Learning (ICML-10),

pp. 807–814.

Okamura AM, Smaby N and Cutkosky MR (2000) An overview

of dexterous manipulation. In: Proceedings of the 2000 IEEE

International Conference on Robotics and Automation (ICRA

2000), San Francisco, CA, 24–28 April 2000, pp. 255–262.

OpenAI (2018) OpenAI Five. https://blog.openai.com/openai-five/.

Pehoski C, Henderson A and Tickle-Degnen L. (1997) In-hand

manipulation in young children: Rotation of an object in the

fingers. American Journal of Occupational Therapy 51(7):

544–552.

Peng XB, Andrychowicz M, Zaremba W and Abbeel P. (2017)

Sim-to-real transfer of robotic control with dynamics randomi-

zation. CoRR abs/1710.06537.

Pinto L, Andrychowicz M, Welinder P, Zaremba W and Abbeel P.

(2017a) Asymmetric actor critic for image-based robot learn-

ing. arXiv preprint arXiv:1710.06542.

Pinto L, Davidson J and Gupta A (2017b) Supervision via compe-

tition: Robot adversaries for learning tasks. In: 2017 IEEE

International Conference on Robotics and Automation (ICRA

2017), Singapore, 29 May–3 June 2017, pp. 1601–1608.

Pinto L, Davidson J, Sukthankar R and Gupta A. (2017c) Robust

adversarial reinforcement learning. In: Proceedings of the 34th

International Conference on Machine Learning (ICML 2017),

Sydney, NSW, Australia, 6–11 August 2017, pp. 2817–2826.

Plappert M, Andrychowicz M, Ray A, et al. (2018) Multi-goal

reinforcement learning: Challenging robotics environments

and request for research. arXiv preprint arXiv:1802.09464.

Rajeswaran A, Kumar V, Gupta A, Schulman J, Todorov E and

Levine S. (2017) Learning complex dexterous manipulation

with deep reinforcement learning and demonstrations. CoRR

abs/1709.10087.

Rus D (1992) Dexterous rotations of polyhedra. In: Proceedings

of the 1992 IEEE International Conference on Robotics and

Automation, Nice, France, 12–14 May 1992, pp. 2758–2763.

Rus D. (1999) In-hand dexterous manipulation of piecewise-

smooth 3-D objects. The International Journal of Robotics

Research 18(4): 355–381.

Rusu AA, Vecerik M, Rothörl T, Heess N, Pascanu R and Hadsell

R. (2017) Sim-to-real robot learning from pixels with progres-

sive nets. In: Proceedings 1st Annual Conference on Robot

Learning (CoRL 2017), Mountain View, CA, 13–15 Novem-

ber 2017, pp. 262–270.

Sadeghi F and Levine S. (2017) CAD2RL: Real single-image

flight without a single real image. In: Robotics: Science and

Systems XIII, Massachusetts Institute of Technology, Cam-

bridge, MA, 12–16 July 2017.

Sawasaki N and Inoue H. (1991) Tumbling objects using a multi-

fingered robot. Journal of the Robotics Society of Japan 9(5):

560–571.

Schulman J, Moritz P, Levine S, Jordan M and Abbeel P. (2015)

High-dimensional continuous control using generalized advan-

tage estimation. arXiv preprint arXiv:1506.02438.

Schulman J, Wolski F, Dhariwal P, Radford A and Klimov O.

(2017) Proximal policy optimization algorithms. arXiv pre-

print arXiv:1707.06347.

ShadowRobot (2005) ShadowRobot Dexterous Hand. https://

www.shadowrobot.com/products/dexterous-hand/.

Shi J, Woodruff JZ, Umbanhowar PB and Lynch K. (2017)

Dynamic in-hand sliding manipulation. IEEE Transactions on

Robotics 33(4): 778–795.

Sutton RS and Barto AG. (1998) Reinforcement Learning: An

Introduction. Cambridge, MA: MIT Press.

Tahara K, Arimoto S and Yoshida M. (2010) Dynamic object

manipulation using a virtual frame by a triple soft-fingered

robotic hand. In: IEEE International Conference on Robotics

and Automation (ICRA 2010), Anchorage, AK, 3–7 May 2010,

pp. 4322–4327.

Tan J, Zhang T, Coumans E, et al. (2018) Sim-to-real: Learning

agile locomotion for quadruped robots. CoRR abs/1804.10332.

Tobin J, Fong R, Ray A, Schneider J, Zaremba W and Abbeel P.

(2017a) Domain randomization for transferring deep neural

networks from simulation to the real world. arXiv preprint

arXiv:1703.06907.

Tobin J, Zaremba W and Abbeel P. (2017b) Domain randomiza-

tion and generative models for robotic grasping. CoRR abs/

1710.06425.

Todorov E, Erez T and Tassa Y. (2012) Mujoco: A physics engine

for model-based control. In: 2012 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS). IEEE,

pp. 5026–5033.

Tournassoud P, Lozano-Pérez T and Mazer E. (1987) Regrasping.

In: Proceedings of the 1987 IEEE International Conference on

Robotics and Automation, Raleigh, NC, 31 March–3 April

1987, pp. 1924–1928.

Tzeng E, Devin C, Hoffman J, et al. (2015) Towards adapting deep

visuomotor representations from simulated to real environ-

ments. CoRR abs/1511.07111.

Unity Technologies (2005) Unity game engine. http://unity3d.

van Hoof H, Hermans T, Neumann G and Peters J (2015) Learn-

ing robot in-hand manipulation with tactile features. In: 15th

IEEE-RAS International Conference on Humanoid Robots

(Humanoids 2015), Seoul, South Korea, 3–5 November 2015,

pp. 121–127.

Yu W, Tan J, Liu CK and Turk G (2017) Preparing for the

unknown: Learning a universal policy with online system

identification. In: Robotics: Science and Systems XIII, Massa-

chusetts Institute of Technology, Cambridge, MA, 12–16 July

2017.

Zhu Y, Wang Z, Merel J, et al. (2018) Reinforcement and imitation

learning for diverse visuomotor skills. CoRR abs/1802.09564.

20 The International Journal of Robotics Research 39(1)

https://www.shadowrobot.com/products/dexterous-hand/
https://www.shadowrobot.com/products/dexterous-hand/
http://unity3d

