Learning dexterous in-hand manipulation

Abstract
We use reinforcement learning (RL) to learn dexterous in-hand manipulation policies that can perform vision-based object reorientation on a physical Shadow Dexterous Hand. The training is performed in a simulated environment in which we randomize many of the physical properties of the system such as friction coefficients and an object’s appearance. Our policies transfer to the physical robot despite being trained entirely in simulation. Our method does not rely on any human demonstrations, but many behaviors found in human manipulation emerge naturally, including finger gaiting, multi-finger coordination, and the controlled use of gravity. Our results were obtained using the same distributed RL system that was used to train OpenAI Five. We also include a video of our results: https://youtu.be/jwSbzNHGflM.

Keywords
Dexterous manipulation, multifingered hands, adaptive control, learning and adaptive systems, humanoid robots

1. Introduction
While dexterous manipulation of objects is a fundamental everyday task for humans, it is still challenging for autonomous robots. Modern-day robots are typically designed for specific tasks in constrained settings and are largely unable to utilize complex end-effectors. In contrast, people are able to perform a wide range of dexterous manipulation tasks in a diverse set of environments, making the human hand a grounded source of inspiration for research into robotic manipulation.

The Shadow Dexterous Hand (ShadowRobot, 2005) is an example of a robotic hand designed for human-level dexterity; it has five fingers with a total of 24 degrees of freedom (DoFs). The hand has been commercially available since 2005; however, it still has not seen widespread adoption, which can be attributed to the daunting difficulty of controlling systems of such complexity. The state-of-the-art in controlling five-fingered hands is severely limited. Some prior methods have shown promising in-hand manipulation results in simulation but do not attempt to transfer to a real-world robot (Bai and Liu, 2014; Mordatch et al., 2012). Conversely, owing to the difficulty in modeling such complex systems, there has also been work in approaches that only train on a physical robot (Falco et al., 2018; Kumar et al., 2016a,b; van Hoof et al., 2015). However, because physical trials are so slow and costly to run, the learned behaviors are very limited.

In this work, we demonstrate methods to train control policies that perform in-hand manipulation and deploy them on a physical robot. The resulting policy exhibits unprecedented levels of dexterity and naturally discovers grasp types found in humans, such as the tripod, prismatic, and tip pinch grasps, and displays contact-rich, dynamic behaviors such as finger gaiting, multi-finger coordination, the controlled use of gravity, and coordinated application of translational and torsional forces to the object. Figure 1 depicts an exemplary manipulation sequence. Our policy can also use vision to sense an object’s pose: an important aspect for robots that should ultimately work outside of a controlled lab setting.

Despite training entirely in a simulator that substantially differs from the real world, we obtain control policies that perform well on the physical robot. We attribute our transfer results to (1) extensive randomizations and added effects in the simulated environment alongside calibration, (2)
memory augmented control policy that admit the possibility to learn adaptive behavior and implicit system identification on the fly, and (3) training at large scale with distributed reinforcement learning (RL). An overview of our approach is depicted in Figure 2.

The paper is structured as follows. In Section 2 we briefly introduce the most important RL concepts and algorithms used in this work. Section 3 gives a system overview, describes the proposed task in more detail, and shows the hardware setup. Section 4 describes observations from deploying the control policy and vision model on a physical robot. Section 5 outlines the control policy training procedure and our distributed RL system. Section 6 describes the vision model architecture and training procedure. Section 7 describes both qualitative and quantitative results from deploying the control policy and vision model on a physical robot. Section 8 discusses related work and we conclude with Section 9.

2. Background

In this section, we introduce the most fundamental RL concepts and discuss the algorithms that we use in this work. For an in-depth introduction to RL, please refer to Sutton and Barto (1998) and Bertsekas (2005).

2.1. RL

We consider the standard RL formalism consisting of an agent interacting with an environment. To simplify the exposition, we assume in this section that the environment is fully observable. An environment is described by a set of states \(S \), a set of actions \(A \), a distribution of initial states \(p(s_0) \), a reward function \(r : S \times A \rightarrow \mathbb{R} \), transition probabilities \(p(s_{t+1}|s_t, a_t) \), and a discount factor \(\gamma \in [0, 1] \).

A policy \(\pi \) is a mapping from a state to a distribution over actions. Every episode starts by sampling an initial state \(s_0 \). At every timestep \(t \) the agent produces an action based on the current state: \(a_t \sim \pi(\cdot|s_t) \). In turn, the agents receive a reward \(r_t = r(s_t, a_t) \) and the environment’s new state \(s_{t+1} \), which is sampled from the distribution \(p(\cdot|s_t, a_t) \). The discounted sum of future rewards, also referred to as the return, is defined as \(R_t = \sum_{i=t}^{\infty} \gamma^{i-t} r_i \). The agent’s goal is to maximize its expected return \(\mathbb{E}[R_0|s_0] \), where the expectation is taken over the initial state distribution, policy, and environment transitions accordingly to the dynamics specified above.

The \(Q \)-function or action-value function is defined as \(Q^\pi(s_t, a_t) = \mathbb{E}[R_t|s_t, a_t] \), while the \(V \)-function or state-value function is defined as \(V^\pi(s_t) = \mathbb{E}[R_t|s_t] \). The value \(A^\pi(s_t, a_t) = Q^\pi(s_t, a_t) - V^\pi(s_t) \) is called the advantage and indicates whether the action \(a_t \) is better or worse than an average action the policy \(\pi \) takes in the state \(s_t \).

2.2. Generalized advantage estimator

Let \(V \) be an approximator to the value function of some policy, i.e., \(V \approx V^\pi \). The value

\[
\hat{V}_t^{(k)} = \sum_{i=t}^{t+k-1} \gamma^{i-t} r_i + \gamma^k V(s_{t+k}) = V^\pi(s_t, a_t)
\]

is called the \(k \)-step return estimator. The parameter \(k \) controls the bias–variance tradeoff of the estimator with bigger values resulting in an estimator closer to empirical returns and having less bias and more variance. The generalized advantage estimator (GAE) (Schulman et al., 2015) is a method of combining multi-step returns in the following way:
where \(0 < \lambda < 1 \) is a hyperparameter. The advantage can then be estimated as follows:

\[
\hat{A}_t^{\text{GAE}} = \nabla \tilde{V}_t^{\text{GAE}} - \nabla V(s_t) = \nabla \pi_t(a_t | s_t)
\]

It is possible to compute the values of this estimator for all states encountered in an episode in linear time (Schulman et al., 2015).

2.3. Proximal policy optimization

Proximal policy optimization (PPO) (Schulman et al., 2017) is one of the most popular on-policy RL algorithms. It simultaneously optimizes a stochastic policy as well as an approximator to the value function. PPO interleaves the collection of new episodes with policy optimization. After a batch of new transitions is collected, optimization is performed with minibatch stochastic gradient descent to maximize the objective:

\[
L_{\text{PPO}} = \min \left(\frac{\pi(a_t | s_t)}{\pi_{\text{old}}(a_t | s_t)} \hat{A}_t^{\text{GAE}}, \right. \\
\left. \text{clip} \left(\frac{\pi(a_t | s_t)}{\pi_{\text{old}}(a_t | s_t)}, 1 - \epsilon, 1 + \epsilon \right) \hat{A}_t^{\text{GAE}} \right)
\]

where \(\frac{\pi(a_t | s_t)}{\pi_{\text{old}}(a_t | s_t)} \) is the ratio of the probability of taking the given action under the current policy \(\pi \) to the probability of taking the same action under the old behavioral policy that was used to generate the data. Here \(\epsilon \) is a
hyperparameter (usually \(\epsilon \approx 0.2 \)) that controls the amount of clipping. This loss encourages the policy to take actions that are better than average (have positive advantage) while clipping discourages bigger changes to the policy by limiting how much can be gained by changing the policy on a particular data point.

The value function approximator is trained with supervised learning with the target for \(V(s_t) \) being \(\hat{V}_t^{\text{GAE}} \). To boost exploration, it is a common practice to encourage the policy distribution to have high entropy by including an entropy bonus in the optimization objective.

3. Task and system overview

In this work, we consider the problem of in-hand object reorientation. We place the object under consideration onto the palm of a humanoid robot hand. The goal is to reorient the object to a desired target configuration in-hand. As soon as the current goal is (approximately) achieved, a new goal is provided until the object is eventually dropped. We use two different objects, a block and an octagonal prism.

This section first describes our hardware setup in detail and then describes how we model the task in simulation.

3.1. Hardware

Our hardware setup consists of a Shadow Dexterous Hand, a PhaseSpace tracking system, as well as a RGB camera system for vision. The entire setup is depicted in Figure 3.

3.1.1. Shadow Dexterous Hand

We use the Shadow Dexterous Hand, which is a humanoid robotic hand with 24 DoFs actuated by 20 pairs of agonist–antagonist tendons. Of the 24 DoFs, 16 can be controlled independently whereas the remaining 8 joints (which are the joints between the non-thumb finger proximal, middle, and distal segments) form 4 pairs of coupled joints. We use the version with electric motor actuators.

3.1.2. PhaseSpace tracking

We use a 3D tracking system to localize the tips of the fingers, to perform calibration procedures, and as ground truth for the RGB image-based object tracking. The PhaseSpace Impulse X2E tracking system uses active LED markers that blink to transmit a unique ID code and linear detector arrays in the cameras to detect the positions and IDs. The system features capture speeds of up to 960 Hz and positional accuracies of below 20 \(\mu \text{m} \). The data is exposed as a 3D point cloud together with labels associating the points with stable numerical IDs. Our setup uses 16 cameras distributed spherically around the hand and centered on the palm with a radius of approximately 0.8 meters.

3.1.3. RGB cameras

For estimating the pose of the object that the hand is manipulating, we have two setups: one that uses PhaseSpace markers to track the object (described above) and one that uses three Basler RGB cameras for vision-based pose estimation. This is because our goal is to eventually have a system that works outside of a lab environment, and vision-based systems are better equipped to handle the real world.

Each Basler acA640-750uc RGB camera has a resolution of \(640 \times 480 \) and is placed approximately 50 cm from the Shadow hand. We use three cameras to resolve pose ambiguities that may occur with monocular vision. We chose these cameras for their flexible parameterization and low latency. Figure 4 shows the placement of the cameras relative to the hand.

3.1.4. Control

The high-level controller is implemented as a Python program running a neural network policy using
Tensorflow (Abadi et al., 2016) on a GPU. Every 80 ms it queries the PhaseSpace sensors and then runs inference with the neural network to obtain the action, which takes roughly 25 ms. If vision-based state estimation is used, we additionally use the video feed from the three RGB cameras and produce a pose estimate of the object before feeding it into the policy. The policy outputs an action that specifies the change of position for each actuator, relative to the current position of the joints controlled by the actuator. It then sends the action to the low-level controller.

The low-level controller is implemented in C++ as a separate process on a different machine that is connected to the Shadow hand via an Ethernet cable. The controller is written as a real-time system: it is pinned to a CPU core, has preallocated memory, and does not depend on any garbage collector to avoid non-deterministic delays. The controller receives the relative action, converts it into an absolute joint angle and clips to the valid range, then sets each component of the action as the target for a PD controller. Every 5 ms, the PD controller queries the Shadow Hand joint angle sensors, then attempts to achieve the desired position.

3.1.5. Joint sensor calibration.

The hand contains 26 Hall effect sensors that sense magnetic field rotations along the joint axis. To transform the raw magnetic measurements from the Hall sensors into joint angles, we use a piecewise linear function interpolated from 3–5 truth points per joint. To calibrate this function, we initialize to the factory default created using physical calibration jigs. For further accuracy, we attach PhaseSpace markers to the fingertips, and minimize the error between the position reported by the PhaseSpace markers and the position estimated from the joint angles. We estimate these linear functions by minimizing the reprojection error with `scipy.minimize`.

3.2. Simulation

We simulate the physical system with the MuJoCo physics engine (Todorov et al., 2012) and we use Unity (Unity Technologies, 2005) to render the images for training the vision-based pose estimator. Our model of the Shadow Dexterous Hand is based on that used in the OpenAI Gym robotics environments (Brockman et al., 2016; Plappert et al., 2018), but has been improved to match the physical system more closely through calibration. A rendering of our simulation is depicted in Figure 5. In the remainder of this section, we describe all aspects of our simulation in detail.

3.2.1. States.

The state of the system is 60-dimensional and consists of angles and velocities of all robot joints as well as the position, rotation, and velocities (linear and angular) of the object. Initial states are sampled by placing the object on the robot’s palm in a random orientation and applying random actions for 100 steps (we discard the trial if the object is dropped in the meantime).

3.2.2. Goals.

The goal is the desired orientation of the object represented as a quaternion. A new goal is generated after the current one has been achieved within a tolerance of 0.4 rad. We consider a goal achieved if there exists a rotation of the object around an arbitrary axis with an angle smaller than 0.4 rad which transforms the current orientation into the desired one.

3.2.3. Actions.

Actions are 20-dimensional and correspond to the desired angles of the hand joints. We discretize each action coordinate into 11 bins of equal size. Owing to the inaccuracy of joint angle sensors on the physical hand, actions are specified relative to the current hand state. In particular, the torque applied to the given joint in simulation is equal to \(P \cdot \frac{(s_t + a - s_f)}{C_1} \), where \(s_t \) is the joint angle at the time when the action was specified, \(a \) is the corresponding action coordinate, \(s_f \) is the current joint angle, and \(P \) is the proportionality coefficient. For the coupled joints, the desired and actual positions represent the sum of the two joint angles.

All actions are rescaled to the range \([-1, 1]\). To avoid abrupt changes to the action signal, which could harm a physical robot, we smooth the actions using an exponential moving average using a coefficient of 0.3 per 80 ms, before applying them (both in simulation and during deployments on the physical robot).

3.2.4. Rewards.

The reward given at timestep \(t \) is \(r_t = d_t - d_{t+1} \), where \(d_t \) and \(d_{t+1} \) are the rotation angles between the desired and current object orientations before and after the transition, respectively. We give an additional
reward of 5 whenever a goal is achieved with the tolerance of 0.4 rad (i.e., \(d_{t+1} < 0.4 \)) and a reward of \(-20\) (penalty) whenever the object is dropped.

3.2.5. Timing. Each environment step corresponds to 80 ms of real time and consists of 10 consecutive MuJoCo simulation steps, each corresponding to 8 ms. An episode ends whenever either the policy achieves 50 consecutive goals, the policy fails to achieve the current goal within 8 seconds of simulated time, or the object is dropped.

3.2.6. Model calibration. We calibrate the parameters of our MuJoCo XML model to better match our physical setup. To do so, we record a trajectory on the physical robot and then optimize over parameters to minimize the error between the simulated and real trajectory.

To create the trajectory, we run two hand-designed policies in sequence against each finger. The first policy measures the behavior of the joints near their limits by extending the joints of each finger completely inward and then completely outward until they stop moving. The second policy measures the dynamic response of the finger by moving the joints of each finger inward and then outward in a series of oscillations. The recorded trajectory across all fingers lasts a few minutes.

To optimize the model parameters, these trajectories are then replayed as open-loop action sequences in the simulator. The optimization objective is to match simulated and real joint angles after 1 second. Parameters are adjusted using iterative coordinate descent until the error is minimized. We exclude modifications to the XML that do not yield an improvement larger than 0.1%. For each joint, we optimize damping, equilibrium position, static friction loss, stiffness, margin, and the minimum and maximum of the joint range. For each actuator, we optimize its proportional gain, force range, and the magnitude of backlash in each direction. Collectively, this corresponds to 264 values.

4. Transferable simulations

Despite our calibration and modeling efforts, the simulation is still only a rough approximation of the physical setup. For example, our model directly applies torque to joints instead of tendon-based actuation and uses rigid-body contact models instead of deformable-body contact models even though the physical robot has deformable fingertips made out of rubber. These differences cause a “reality gap” and make it unlikely for a policy trained in a simulation with these inaccuracies to transfer well.

We therefore face a dilemma: we cannot train on the physical robot because deep RL algorithms require millions of samples; conversely, training only in simulation results in policies that do not transfer well due to the gap between the simulated and real environments. To overcome the reality gap, we modify the basic version of our simulation to a distribution over many simulations that foster transfer (Peng et al., 2017; Sadeghi and Levine, 2017; Tobin et al., 2017a). By carefully selecting the sensing modalities and by randomizing most aspects of our simulated environment we are able to train policies that are less likely to overfit to a specific simulated environment and more likely to transfer successfully to the physical robot.

4.1. Observations

We give the control policy observations of the fingertips using PhaseSpace markers and the object pose either from PhaseSpace markers or the vision-based pose estimator. Although the Shadow Dexterous Hand contains a broad array of built-in sensors, we specifically avoided providing these as observations to the policy because they are subject to state-dependent noise that would have been difficult to model in the simulator. For example, the fingertip tactile sensor measures the pressure of a fluid stored in a balloon inside the fingertip, which correlates with the force applied to the fingertip but also with a number of confounding variables, including atmospheric pressure, temperature, and the shape of the contact and intersection geometry. Although it is straightforward to determine the existence of contacts in the simulator, it would be difficult to model the distribution of sensor values. Similar considerations apply to the joint angles measured by Hall effect sensors, which are used by the low-level controllers but not provided to the policy due to their tendency to be noisy and hard to calibrate.

4.2. Randomizations

Following previous work on domain randomization (Peng et al., 2017; Sadeghi and Levine, 2017; Tobin et al., 2017a), we randomize most of the aspects of the simulated environment in order to learn both a policy and a vision model that generalizes to reality. We overall found that it is important to center randomized parameters on reasonable physical values of the actual setup, which we obtain via the previously described calibration step. Randomizations also allow us to model uncertainty: we typically randomize parameters with high uncertainty (e.g., actuation parameters) more than parameters for which we have values with low uncertainty (e.g., object dimensions).

4.2.1. Observation noise. To better mimic the kind of noise we expect to experience in reality, we add Gaussian noise to policy observations. In particular, we apply a correlated noise that is sampled once per episode as well as an uncorrelated noise sampled at every timestep. Apart from Gaussian correlated noise, we also add more structured noise coming from inaccurate placement of the motion capture markers by computing the observations using slightly misplaced markers in the simulator. The configuration of noise levels is described in Table 1.

4.2.2. Physics randomizations. The physical parameters are sampled at the beginning of every episode and held fixed for the whole episode. We typically randomize around
values that we obtained through calibration. The full set of randomized values are available in Table 2.

We also randomize the timing of environment steps. Every environment step is simulated as 10 MuJoCo physics simulator steps with $\Delta t = 8 ms + \exp(\lambda)$, where $\exp(\lambda)$ denotes the exponential distribution and the coefficient λ is uniformly sampled once per episode from the range $[1, 250, 10, 000]$.

4.2.3. Unmodeled effects. The physical robot experiences many effects that are not modeled by our simulation, e.g., motor backlash or motion capture occlusions. Here, we briefly describe each randomization.

PhaseSpace tracking errors Noise aside, readings of the motion capture markers from the PhaseSpace system might be occasionally unavailable for a short period of time due to instability of the service. To model such error in the simulator, we mask the fingertip markers with a small probability (0.2 per second) for 1 second so that the policy has a chance to learn how to interact with the environment while the system temporarily loses track of some markers. Furthermore, the markers might be occluded while in motion, causing a brief delay of readings of some fingertip positions. In the simulator, a small weightless cuboid site is attached to the back of each nail and we consider a marker occluded whenever a collision with the site is detected as another finger or object is getting too close. If a fingertip marker is deemed occluded, we use its last available position readings instead of the current one.

Action noise and delay We add correlated and uncorrelated Gaussian noise to all actions to account for an imperfect actuation system. The detailed noise levels can be found in Table 3. Moreover, the real system contains many potential sources of delays between the time that observations are sensed and actions are executed, from network delay to the computation time of the neural network. Therefore, we introduce a simple model of action delay to the simulator. At the beginning of every episode we sample for every actuator whether it is going to be delayed (with probability 0.5) or not. The actions corresponding to delayed actuator are delayed by one environment step, i.e., approximately 80 ms.

Backlash model The physical Shadow Dexterous Hand is tendon-actuated, which causes a substantial amount of backlash, while the MuJoCo model assumes direct actuation on the joints. In order to account for it, we introduce a simple model of backlash that modifies actions before they are sent to MuJoCo. In particular, for every joint we have two parameters that specify the amount of backlash in each direction, and are denoted δ_{-1} and δ_{+1}, as well as a time-varying variable s denoting the current state of slack. We obtained the values of δ_{-1}, δ_{+1} through calibration. At the beginning of every episode we sample the values of δ_{-1}, δ_{+1} from the Gaussian distribution centered around the calibrated values with the standard deviation of 0.1. Let $a_{in} \in [-1, 1]$ be an action specified by the policy. Our backlash model works as follows: we compute the new value of the slack variable $s' = s + a_{in} \delta_{sgn(s_{in})} \Delta t_{-1}$, compute the scaling factor $\alpha = 1 - \frac{|s_{out} - s'_{out}|}{|s_{out} - s''_{out}|}$, where $\epsilon = 10^{-12}$ is a constant used for numerical stability, and finally multiply the action by $\alpha: a_{out} = \alpha a_{in}$.

Random forces To represent unmodeled dynamics, we sometimes apply random forces to the object. The probability p that a random force is applied is sampled at the beginning of the episode from the loguniform distribution between 0.1% and 10%. Then, at every timestep, with probability p we apply a random force from the three-dimensional Gaussian distribution with the standard deviation equal to 1 m/s2 times the mass of the object on each coordinate and decay the force with a coefficient of 0.99 per 80 ms.

4.2.4. Visual appearance randomizations. We randomize the following aspects of the rendered scene: camera positions and intrinsics, lighting conditions, the pose of the hand and object, and the materials and textures for all objects in the scene. Figure 6 depicts some examples of these randomized environments.

Table 1. Standard deviation of applied Gaussian observation noise.

<table>
<thead>
<tr>
<th>Observation</th>
<th>Correlated</th>
<th>Uncorrelated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fingertips positions</td>
<td>± 1 mm</td>
<td>± 2 mm</td>
</tr>
<tr>
<td>Object position</td>
<td>± 5 mm</td>
<td>± 1 mm</td>
</tr>
<tr>
<td>Object orientation</td>
<td>± 0.1 rad</td>
<td>± 0.1 rad</td>
</tr>
<tr>
<td>Fingertip marker positions</td>
<td>± 3 mm</td>
<td></td>
</tr>
<tr>
<td>Hand base marker position</td>
<td>± 1 mm</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Ranges of physics parameter randomizations.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Scaling factor range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Object dimensions</td>
<td>uniform([0.95, 1.05])</td>
</tr>
<tr>
<td>Object and robot link masses</td>
<td>uniform([0.5, 1.5])</td>
</tr>
<tr>
<td>Surface friction coefficients</td>
<td>uniform([0.7, 1.3])</td>
</tr>
<tr>
<td>Robot joint damping coefficients</td>
<td>loguniform([0.3, 3.0])</td>
</tr>
<tr>
<td>Actuator force gains (P term)</td>
<td>loguniform([0.75, 1.5])</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Additive term range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joint limits</td>
<td>$\mathcal{N}(0, 0.15)$ rad</td>
</tr>
<tr>
<td>Gravity vector (per coordinate)</td>
<td>$\mathcal{N}(0, 0.4)$ m/s2</td>
</tr>
</tbody>
</table>

Table 3. Standard deviation of action noise.

<table>
<thead>
<tr>
<th>Noise type</th>
<th>Percentage of range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uncorrelated additive</td>
<td>5%</td>
</tr>
<tr>
<td>Correlated additive</td>
<td>1.5%</td>
</tr>
<tr>
<td>Uncorrelated multiplicative</td>
<td>1.5%</td>
</tr>
</tbody>
</table>
The materials and textures are randomized for every visible object in the scene. We randomize the hue, saturation, and value for the object faces around calibrated values from real-world measurements. The color of the robot is uniformly randomized. Material properties such as glossiness and shininess are randomized as well. Camera position and orientation are slightly randomized around values calibrated to real-world locations. Lights are randomized individually, and intensities are scaled based on a randomly drawn total intensity. After rendering the scene to images from the three separate cameras, additional augmentation is applied. The images are linearly normalized to have zero mean and unit variance. Then the image contrast is randomized, and finally per-pixel Gaussian noise is added. Details are given in Table 4.

5. Learning control policies from state

We use the previously described distribution over randomized simulations to train a single control policy using RL. Since we optimize for performance over all randomizations, the policy cannot overfit to a single variant of our simulation, thus making it transferable to the physical robot. However, since the policy has to handle a large number of different variants of the same problem, we propose to use a recurrent policy with access to memory. We further use a distributed RL system in order to make solving this challenging problem tractable. Both the policy architecture and our training procedure using our distributed system are described in this section.

5.1. Policy architecture

Many of the randomizations we employ persist across an episode, and thus it should be possible for a memory augmented policy to identify properties of the current environment and adapt its own behavior accordingly. For instance, initial steps of interaction with the environment can reveal the weight of the object or how fast the index finger can move. We therefore represent the policy as a recurrent neural network with memory, namely an LSTM (Hochreiter and Schmidhuber, 1997) with an additional hidden layer with ReLU (Nair and Hinton, 2010) activations inserted between inputs and the LSTM.

The policy is trained with PPO (Schulman et al., 2017). PPO requires the training of two networks: a policy

![Fig. 6. Simulations with different randomized visual appearances. Rows correspond to the renderings from the same camera, and columns correspond to renderings from three separate cameras that are simultaneously fed into the neural network.](image-url)

Table 4. Ranges of vision randomizations.

<table>
<thead>
<tr>
<th>Randomization type</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of cameras</td>
<td>3</td>
</tr>
<tr>
<td>Camera position</td>
<td>± 1.5 mm</td>
</tr>
<tr>
<td>Camera rotation</td>
<td>0–3° around a random axis</td>
</tr>
<tr>
<td>Camera field of view</td>
<td>± 1°</td>
</tr>
<tr>
<td>Robot material colors</td>
<td>uniform over RGB values</td>
</tr>
<tr>
<td>Robot material metallic level</td>
<td>5–25%a</td>
</tr>
<tr>
<td>Robot material glossiness level</td>
<td>0–100%a</td>
</tr>
<tr>
<td>Object material hue</td>
<td>± 1%</td>
</tr>
<tr>
<td>Object material saturation</td>
<td>± 15%</td>
</tr>
<tr>
<td>Object material value</td>
<td>± 15%</td>
</tr>
<tr>
<td>Object metallic level</td>
<td>5–15%a</td>
</tr>
<tr>
<td>Object glossiness level</td>
<td>5–15%a</td>
</tr>
<tr>
<td>Number of lights</td>
<td>4–6</td>
</tr>
<tr>
<td>Light position</td>
<td>uniform over upper half-sphere</td>
</tr>
<tr>
<td>Light relative intensity</td>
<td>1–5</td>
</tr>
<tr>
<td>Total light intensity</td>
<td>0–15a</td>
</tr>
<tr>
<td>Image contrast adjustment</td>
<td>50–150%</td>
</tr>
<tr>
<td>Additive per-pixel Gaussian noise</td>
<td>± 10%</td>
</tr>
</tbody>
</table>

*a In units used by Unity. See https://unity3d.com/learn/tutorials/s/graphics.
network, which maps observations to actions; and a value network, which predicts the discounted sum of future rewards starting from a given state. Both networks have the same architecture but have independent parameters. The network architecture is depicted in Figure 7.

Since the value network is only used during training, we use an Asymmetric Actor–Critic (Pinto et al., 2017a) approach. Asymmetric Actor–Critic exploits the fact that the value network can have access to information that is not available on the real robot system. This includes noiseless observation and additional observations such as joint angles and angular velocities, which we cannot sense reliably but which are readily available in simulation during training. The additional input potentially simplifies the problem of learning good value estimates since less information needs to be inferred.

We also normalize all observations given to the policy and value networks with running means and standard deviations. We then clip observations such that they are within five standard deviations of the mean. We normalize the advantage estimates within each minibatch. We also normalize targets for the value function with running statistics. The list of inputs fed to both networks can be found in Table 5.

5.2. Distributed training with Rapid

We use the same distributed implementation of PPO that was used to train OpenAI Five (OpenAI, 2018) without any modifications. Overall, we found that PPO scales up easily and requires little hyperparameter tuning. The architecture of our distributed training system is depicted in Figure 8.

In our implementation, a pool of 384 worker machines, each with 16 CPU cores, generate experience by rolling out the current version of the policy in a sample from the previously described distribution of randomized simulations. Workers download the newest policy parameters from the optimizer at the beginning of every epoch, generate training episodes, and send the generated episodes back to the optimizer. The communication between the optimizer and workers is implemented using the Redis in-memory data store. We use multiple Redis instances for load-balancing, and workers are assigned to an instance randomly. This setup allows us to generate about 2 years of simulated experience per hour.

The optimization is performed on a single machine with eight GPUs. The optimizer threads pull down generated experience from Redis and then stage it to their respective GPU’s memory for processing. After computing gradients locally, they are averaged across all threads using MPI, which we then use to update the network parameters.

The hyperparameters that we used can be found in Table 6.

6. State estimation from vision

The policy that we described in the previous section takes the object’s position as input and requires a motion capture system for tracking the object on the physical robot. This is undesirable because tracking objects with such a system is only feasible in a lab setting where markers can be placed on each object. Since our ultimate goal is to build robots for the real world that can interact with arbitrary objects, sensing them using vision is an important building block. In this work, we therefore wish to infer the object’s pose from vision alone. Similar to the policy, we train this estimator only on synthetic data coming from the simulator.
6.1. Model architecture

To resolve ambiguities and to increase robustness, we use three RGB cameras mounted with differing viewpoints of the scene. The recorded images are passed through a convolutional neural network (CNN), which is depicted in Figure 9. The network predicts both the position and the orientation of the object. During execution of the control policy on the physical robot, we feed the pose estimator’s prediction into the policy, which in turn produces the next action. The hyperparameters for the vision model architecture are listed in Table 7.

6.2. Training

We run the trained policy in the simulator until we gather one million states. We then train the vision network by

![Diagram of network architecture](image)

Fig. 9. Vision network architecture. Camera images are passed through a convolutional feature stack that consists of two convolutional layers, max-pooling, 4 ResNet blocks (He et al., 2016), and spatial softmax (SSM) (Finn et al., 2015) layers with shared weights between the feature stacks for each camera. The resulting representations are flattened, concatenated, and fed to a fully connected network. All layers use ReLU (Nair and Hinton, 2010) activation function. Linear outputs from the last layer form the estimates of the position and orientation of the object.

<table>
<thead>
<tr>
<th>Layer</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input RGB Image</td>
<td>$200 \times 200 \times 3$</td>
</tr>
<tr>
<td>Conv2D</td>
<td>32 filters, 5×5, stride 1, no padding</td>
</tr>
<tr>
<td>Conv2D</td>
<td>32 filters, 3×3, stride 1, no padding</td>
</tr>
<tr>
<td>Max pooling</td>
<td>3×3, stride 3</td>
</tr>
<tr>
<td>ResNet</td>
<td>1 block, 16 filters, 3×3, stride 3</td>
</tr>
<tr>
<td>ResNet</td>
<td>2 blocks, 32 filters, 3×3, stride 3</td>
</tr>
<tr>
<td>ResNet</td>
<td>2 blocks, 64 filters, 3×3, stride 3</td>
</tr>
<tr>
<td>Spatial Softmax</td>
<td>—</td>
</tr>
<tr>
<td>Flatten</td>
<td>—</td>
</tr>
<tr>
<td>Concatenate</td>
<td>All 3 image towers combined</td>
</tr>
<tr>
<td>Fully connected</td>
<td>128 units</td>
</tr>
<tr>
<td>Fully connected</td>
<td>Output dimension (3 position $+ 4$ rotation)</td>
</tr>
</tbody>
</table>

![Diagram of training infrastructure](image)

Fig. 8. Our distributed training infrastructure in Rapid. Individual threads are depicted as blue squares. Worker machines randomly connect to a Redis server from which they pull new policy parameters and to which they send new experience. The optimizer machine has one MPI process for each GPU, each of which gets a dedicated Redis server. Each process has a Puller thread which pulls down new experience from Redis into a buffer. Each process also has a Stager thread which samples minibatches from the buffer and stages them on the GPU. Finally, each Optimizer thread uses a GPU to optimize over a minibatch after which gradients are accumulated across threads and new parameters are sent to the Redis servers.
minimizing the mean squared error between the normalized prediction and the ground-truth with minibatch gradient descent. For each minibatch, we render the images with randomized appearance before feeding them to the network. Moreover, we augment the data by modifying the object pose. More specifically, we leave the object pose as is with 20% probability, rotate the object by 90° around its main axes with 40% probability, and “jitter” the object by adding Gaussian noise to both the position and rotation independently with 40% probability. We use 2 GPUs for rendering and 1 GPU for running the network and training. The hyperparameters used for the vision model training are listed in Table 8.

Table 8. Hyperparameters used for the vision model training.

<table>
<thead>
<tr>
<th>Hyperparameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware configuration</td>
<td>3 GPUs + 32 CPU cores<sup>a</sup></td>
</tr>
<tr>
<td>Optimizer</td>
<td>Adam (Kingma and Ba, 2014)</td>
</tr>
<tr>
<td>Learning rate</td>
<td>0.0005, halved every 20,000 batches</td>
</tr>
<tr>
<td>Minibatch size</td>
<td>64 × 3 = 192 RGB images</td>
</tr>
<tr>
<td>Image size</td>
<td>200 × 200 pixels</td>
</tr>
<tr>
<td>Weight decay regularization</td>
<td>0.001</td>
</tr>
<tr>
<td>Number of training batches</td>
<td>400,000</td>
</tr>
</tbody>
</table>

^aWe use NVIDIA P40 GPUs for vision training. Two GPUs are used for rendering and one for the optimization.

7. Results

In this section, we evaluate the proposed system. We start by deploying the system on the physical robot, and evaluating its performance on in-hand manipulation of a block and an octagonal prism. We then focus on individual aspects of our system: we conducted an ablation study of the importance of randomizations and policies with memory capabilities in order to successfully transfer. Next, we consider the sample complexity of our proposed method. Finally, we investigate the performance of the proposed vision pose estimator and show that using only synthetic images is sufficient to achieve good performance.

7.1. Qualitative results

During deployment on the robot as well as in simulation, we note that our policies naturally exhibit many of the grasps found in humans (see Figure 10). Furthermore, the policy also naturally discovers many strategies for dexterous in-hand manipulation described by the robotics community (Ma and Dollar, 2011) such as finger pivoting, finger gaiting, multi-finger coordination, the controlled use of gravity, and coordinated application of translational and torsional forces to the object. It is important to note that we did not incentivize this directly: we do not use any human demonstrations and do not encode any prior into the reward function.

For precision grasps, our policy tends to use the little finger instead of the index or middle finger. This may be because the little finger of the Shadow Dexterous Hand has an extra DoF compared with the index, middle, and ring fingers, making it more dexterous. In humans, the index and middle finger are typically more dexterous. This means that our system can rediscover grasps found in humans, but adapt them to better fit the limitations and abilities of its own body.

We observe another interesting parallel between humans and our policy in finger pivoting, which is a strategy in which an object is held between two fingers and rotate around this axis. It was found that young children have not yet fully developed their motor skills and therefore tend to rotate objects using the proximal or middle phalanges of a finger (Pehoski et al., 1997). Only later in their lives do they switch to primarily using the distal phalanx, which is
the dominant strategy found in adults. It is interesting that our policy also typically relies on the distal phalanx for finger pivoting.

During experiments on the physical robot we noticed that the most common failure mode was dropping the object while rotating the wrist pitch joint down. Moreover, the vertical joint was the most common source of robot breakages, probably because it handles the biggest load. Given these difficulties, we also trained a policy with the wrist pitch joint locked. We noticed that not only does this policy transfer better to the physical robot but it also seems to handle the object much more deliberately with many of the above grasps emerging frequently in this setting.

Other failure modes that we observed were dropping the object shortly after the start of a trial (which may be explained by incorrectly identifying some aspect of the environment) and getting stuck because the edge of an object got caught in a screw hole (which we do not model).

We encourage the reader to watch the accompanying video to get a better sense of the learned behaviors (please refer to the supplement material).

7.2. Quantitative results

In this section, we evaluate our results quantitatively. To do so, we measure the number of consecutive successful rotations until the object is either dropped, a goal has not been achieved within 80 seconds, or until 50 rotations are achieved. All results are available in Table 9.

Our results allow us to directly compare the performance of each task in simulation and on the real robot. For instance, manipulating a block in simulation achieves a median of 50 successes while the median on the physical setup is 13. This is the overall trend that we observe: even though randomizations and calibration narrow the reality gap, it still exists and performance on the real system is worse than in simulation. We discuss the importance of individual randomizations in greater detail in Section 7.3.

When using vision for pose estimation, we achieve slightly worse results both in simulation and on the real robot. This is because even in simulation, our model has to perform transfer because it was only trained on images rendered with Unity but we use MuJoCo rendering for evaluation in simulation (thus making this a sim-to-sim transfer problem). On the real robot, our vision model does slightly worse compared with pose estimation with PhaseSpace. However, the difference is surprisingly small, suggesting that training the vision model only in simulation is enough to achieve good performance on the real robot. For vision pose estimation, we found that it helps to use a white background and to wipe the object with a tack cloth between trials to remove detritus from the robot hand.

We also evaluate the performance on a second type of object, an octagonal prism. To do so, we finetuned a trained block rotation control policy to the same randomized distribution of environments but with the octagonal prism as the target object instead of the block. Even though our randomizations were all originally designed for the block, we were able to learn successful policies that transfer. Compared with the block, however, there is still a performance gap both in simulation and on the real robot. This suggests that further tuning is necessary and that the introduction of additional randomization could improve transfer to the physical system.

We also briefly experimented with a sphere but failed to achieve more than a few rotations in a row, perhaps because we did not randomize any MuJoCo parameters related to rolling behavior or because rolling objects are much more sensitive to unmodeled imperfections in the hand such as screw holes. It would also be interesting to train a unified policy that can handle multiple objects, but we leave this for future work.

Obtaining the results in Table 9 proved to be challenging due to robot breakages during experiments. Repairing the robot takes time and often changes some aspects of the system, which is why the results were obtained at different times. In general, we found that problems with hardware breakage were one of the key challenges we had to overcome in this work.

Table 9. The number of successful consecutive rotations in simulation and on the physical robot. All policies were trained on environments with all randomizations enabled. We performed 100 trials in simulation and 10 trails per policy on the physical robot. Each trial terminates when the object is dropped, 50 rotations are achieved or a timeout is reached. For physical trials, results were taken at different times on the physical robot.

<table>
<thead>
<tr>
<th>Simulated task</th>
<th>Mean</th>
<th>Median</th>
<th>Individual trials (sorted)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block (state)</td>
<td>43.4±13.8</td>
<td>50</td>
<td>41 29 27 14 12 6 4 4 1</td>
</tr>
<tr>
<td>Block (state, locked wrist)</td>
<td>44.2±13.4</td>
<td>50</td>
<td>43 32 29 29 28 19 13 12 9</td>
</tr>
<tr>
<td>Block (vision)</td>
<td>30.0±10.3</td>
<td>33</td>
<td>28 26 15 13 10 8 3 2 1</td>
</tr>
<tr>
<td>Octagonal prism (state)</td>
<td>29.0±19.7</td>
<td>30</td>
<td>15 8 8 5 5 4 3 2 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Physical task</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Block (state)</td>
<td>18.8±17.1</td>
<td>13</td>
<td>41 29 27 14 12 6 4 4 1</td>
</tr>
<tr>
<td>Block (state, locked wrist)</td>
<td>26.4±13.4</td>
<td>28.5</td>
<td>43 32 29 29 28 19 13 12 9</td>
</tr>
<tr>
<td>Block (vision)</td>
<td>15.2±14.3</td>
<td>11.5</td>
<td>28 26 15 13 10 8 3 2 1</td>
</tr>
<tr>
<td>Octagonal prism (state)</td>
<td>7.8±7.8</td>
<td>5</td>
<td>15 8 8 5 5 4 3 2 1</td>
</tr>
</tbody>
</table>
To train in. However, when deploying these policies on the real robot we find that training with randomizations is therefore require more compute and simulated experience over wall-clock time. Policies trained in environments with performance in simulation for each environment plotted randomization). (3) No observation noise (vision)

We include results for a FF policy with LSTM value function, a feed-forward (FF) policy and a LSTM value function, and both a FF policy and a LSTM architectures: the baseline which has a LSTM policy and show the simulation performance of three different RL performances in the randomized simulation. In Figure 12 we find that using memory is helpful to achieve good performance in the randomized simulation. In Table 10 summarizes our results. Specifically, we find that training with all randomizations leads to a median of 13 consecutive goals achieved, while policies trained with no randomizations, no physics randomizations, and no unmodeled effects achieve only median of 0, 2, and 2 consecutive goals, respectively.

When holding out observation noise randomizations, the performance gap is less clear than for the other randomization groups. We believe that is because our motion capture system has very little noise. However, we still include this randomization because it is important when the vision and control policies are composed. In this case, the pose estimate of the object is much more noisy, and, therefore, training with observation noise should be more important. The results in Table 10 suggest that this is indeed the case, with a drop from median performance of 11.5 to 3.5 if the observation noise randomizations are withheld.

The vast majority of training time is spent making the policy robust to different physical dynamics. Learning to rotate an object in simulation without randomizations requires about 3 years of simulated experience, while achieving the same performance in a fully randomized simulation requires about 100 years of experience. This corresponds to a wall-clock time of around 1.5 hours and 50 hours in our simulation setup, respectively.

7.4. Effect of memory in policies

We find that using memory is helpful to achieve good performance in the randomized simulation. In Figure 12 we show the simulation performance of three different RL architectures: the baseline which has a LSTM policy and value function, a feed-forward (FF) policy and a LSTM value function, and both a FF policy and FF value function. We include results for a FF policy with LSTM value function because it was plausible that having a more expressive value function would accelerate training, allowing the policy to act robustly without memory once it converged. However, we see that the baseline outperforms both variants, indicating that it is beneficial to have some amount of memory in the actual policy.
Moreover, we found out that LSTM state is predictive of the environment randomizations. In particular, we discovered that the LSTM hidden state after 5 seconds of simulated interaction with the block allows to predict whether the block is bigger or smaller than average in 80% of cases.

To investigate the importance of memory-augmented policies for transfer, we evaluate the same three network architectures as described above on the physical robot. Table 11 summarizes the results. Our results show that having a policy with access to memory yields a higher median of successful rotations, suggesting that the policy may use memory to adapt to the current environment.

4 Qualitatively we also find that FF policies often get stuck and then run out of time.

In Figure 13 we show results when varying the number of CPU cores and GPUs used in training, where we keep the batch size per GPU fixed such that overall batch size is directly proportional to number of GPUs. Because we could linearly slow down training by simply using less CPU machines and having the GPUs wait longer for data, it is more informative to vary the batch size. We see that our default setup with an 8 GPU optimizer and 6,144 rollout CPU cores reaches 20 consecutive achieved goals approximately 5.5 times faster than a setup with a 1 GPU optimizer and 768 rollout cores. Furthermore, when using 16 GPUs we reach 40 consecutive achieved goals roughly 1.8 times faster than when using the default 8 GPU setup. Scaling up further results in diminishing returns, but it seems that scaling up to 16 GPUs and 12,288 CPU cores gives close to linear speedup.

7.5. Vision performance

In Table 9 we show that we can combine a vision-based pose estimator and the control policy to successfully transfer to the real robot without embedding sensors in the target object. To better understand why this is possible, we evaluate the precision of the pose estimator on both synthetic and real data. Evaluating the system in simulation is easy because we can generate the necessary data and have access
to the precise object’s pose to compare against. In contrast, real images had to be collected by running a state-based policy on our robot platform. We use PhaseSpace to estimate the object’s pose, which is therefore subject to errors. The resulting collected test set consists of 992 real samples. For simulation, we use test sets rendered using Unity and MuJoCo. The MuJoCo renderer was not used during training, thus the evaluation can be also considered as an instance of sim-to-sim transfer. Table 12 summarizes our results.

Our results show that the model achieves low error for both rotation and position prediction when tested on synthetic data. On the images rendered with MuJoCo, there is only a slight increase in error, suggesting successful sim-to-sim transfer. The error further increases on the real data, which is due to the gap between simulation and reality but also because the ground truth is more challenging to obtain due to noise, occlusions, imperfect marker placement, and delayed sensor readings. Despite that the prediction error is bigger than the observation noise used during policy training (Table 1), the vision-based policy performs well on the physical robot (Table 9).

8. Related work

In order to make it easier to understand the state of the art in dexterous in-hand manipulation we gathered a representative set of videos from related work, and created a playlist out of them (see the supplemental material).

8.1. Dexterous manipulation

Dexterous manipulation has been an active area of research for decades (Bicchi, 2000; Fearing, 1986; Ma and Dollar, 2011; Okamura et al., 2000; Rus, 1999). Many different approaches and strategies have been proposed over the years. This includes rolling (Bicchi and Sorrentino, 1995; Cherif and Gupta, 1999; Doulgeri and Droukas, 2013; Han et al., 1997; Han and Trinkle, 1998), sliding (Cherif and Gupta, 1999; Shi et al., 2017), finger gaiting (Han and Trinkle, 1998), finger tracking (Rus, 1992), pushing (Dafle and Rodriguez, 2017), and re-grasping (Dafle et al., 2014; Tournassoud et al., 1987). For some hand types, strategies such as pivoting (Aiyama et al., 1993), tilting (Erdmann and Mason, 1988), tumbling (Sawasaki and Inoue, 1991), tapping (Huang and Mason, 2000), two-point manipulation (Abell and Erdmann, 1995), and two-palm manipulation (Erdmann, 1998) are also options. These approaches use planning and therefore require exact models of both the hand and object. After computing a trajectory, the plan is typically executed open-loop, thus making these methods prone to failure if the model is not accurate.

Other approaches take a closed-loop approach to dexterous manipulation and incorporate sensor feedback during execution, e.g., tactile sensing (Li et al., 2014a,b, 2013; Tahara et al., 2010). While those approaches allow mistakes to be corrected at runtime, they still require reasonable models of the robot kinematics and dynamics, which can be challenging to obtain for under-actuated hands with many DoFs.

Deep RL has also been used successfully to learn complex manipulation skills on physical robots. Guided policy search (Levine and Koltun, 2013; Levine et al., 2015) learns simple local policies directly on the robot and distills them into a global policy represented by a neural network. An alternative is to use many physical robots simultaneously in order to be able to collect sufficient experience (Gu et al., 2017; Kalashnikov et al., 2018; Levine et al., 2018).

8.2. Dexterous in-hand manipulation

Since a very large body of past work on dexterous manipulation exists, we limit the more detailed discussion to set-ups that are most closely related to our work on dexterous in-hand manipulation.

Mordatch et al. (2012) and Bai and Liu (2014) proposed methods to generate trajectories for complex and dynamic in-hand manipulation, but results were limited to simulation. There has also been significant progress in learning complex in-hand dexterous manipulation (Barth-Maron et al., 2018; Plappert et al., 2018) and even tool use (Rajeswaran et al., 2017) using deep RL, but those approaches were also only evaluated in simulation.

In contrast, multiple authors learn policies for dexterous in-hand manipulation directly on the robot. van Hoof et al. (2015) learned in-hand manipulation for a simple three-fingered gripper whereas Kumar et al. et al. (2016a,b) and Falco et al. (2018) learned such policies for more complex humanoid hands. While learning directly on the robot means that modeling the system is not an issue, it also means that learning has to be performed with only a handful of trials. This is only possible when learning very simple (e.g., linear or local) policies that, in turn, do not exhibit sophisticated behaviors.

8.3. Sim-to-real transfer

Domain adaption methods (Gupta et al., 2017; Tzeng et al., 2015), progressive nets (Rusu et al., 2017), and learning inverse dynamics models (Christiano et al., 2016) were all proposed to help with sim-to-real transfer. All of these methods assume access to real data. An alternative

<table>
<thead>
<tr>
<th>Test set</th>
<th>Rotation error</th>
<th>Position error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rendered images (Unity)</td>
<td>2.71°±1.62</td>
<td>3.12mm±1.52</td>
</tr>
<tr>
<td>Rendered images (MuJoCo)</td>
<td>3.23°±2.91</td>
<td>3.71mm±4.07</td>
</tr>
<tr>
<td>Real images</td>
<td>5.01°±2.47</td>
<td>9.27mm±4.02</td>
</tr>
</tbody>
</table>
approach is to make the policy itself more adaptive during training in simulation using domain randomization. Domain randomization was used to transfer object pose estimators (Tobin et al., 2017a) and vision policies for fly drones (Sadeghi and Levine, 2017). This idea has also been extended to dynamics randomization (Antonova et al., 2017; Tan et al., 2018; Yu et al., 2017) to learn a robust policy that transfers to similar environments but with different dynamics. Domain randomization was also used to plan robust grasps (Mahler et al., 2017a,b; Tobin et al., 2017b) and to transfer learned locomotion (Tan et al., 2018) and grasping (Zhu et al., 2018) policies for relatively simple robots. Pinto et al. (2017b,c) proposed the use of adversarial training to obtain more robust policies and showed that it also helps with transfer to physical robots.

9. Conclusion

In this work, we have demonstrated that in-hand manipulation skills learned with RL in a simulator can achieve an unprecedented level of dexterity on a physical five-fingered hand. This is possible due to extensive randomizations of the simulator, large-scale distributed training infrastructure, policies with memory, and a choice of sensing modalities that can be modeled in the simulator. Our results have demonstrated that, contrary to a common belief, contemporary deep RL algorithms can be applied to solving complex real-world robotics problems that are beyond the reach of existing non-learning-based approaches.

Acknowledgements

We would like to thank Rachel Fong, Ankur Handa, and a former OpenAI employee for exploratory work and helpful discussions, a former OpenAI employee for advice and some repairs on hardware and contributions to the low-level PID controller, Pieter Abbeel for helpful discussions, Gavin Cassidy and Luke Moss for their support in maintaining the Shadow Hand, and everybody at OpenAI for their help and support. We would also like to thank the following people for providing feedback on earlier versions of this manuscript: Pieter Abbeel, Joshua Achiam, Tamim Asfour, Aleksandar Botev, Greg Brockman, Rewon Child, Jack Clark, Marek Cygan, Harri Edwards, Ron Fearing, Ken Goldberg, Anna Goldie, Edward Mehr, Azalia Mirhoseini, Lerrel Pinto, Aditya Ramesh, Ian Rust, John Schulman, Shubho Sengupta, and Ilya Sutskever.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Supplementary material

A video summarizing our work can be found at: https://youtu.be/jwSbzNHGifM.

We have also made available the uncut and real-time video footage of a trial in which the robot hand successfully performed 50 consecutive rotations: https://youtu.be/DEk8FumoD4E.

We also gathered a representative set of videos from related work to illustrate the previous state of the art in dexterous manipulation: https://bit.ly/2uOK21Q.

Finally, we have released a supplementary blog post that summarizes the most important findings in an accessible manner: https://blog.openai.com/learning-dexterity/.

Notes

1. The environments we consider in this article are only partially observable.
2. A site represents a location of interest relative to the body frame in MuJoCo. See also http://mujoco.org/book/modeling.html#site.
3. We had trouble training in this environment from scratch, so we fine-tuned a policy trained in the original environment instead.
4. When training in an environment with no randomizations, the FF and LSTM policy converge to the same performance in the same amount of time. This shows that a FF policy has the capacity and observations to solve the non-randomized task but cannot solve it reliably with all randomizations, plausibly because it cannot adapt to the environment.
5. A sample contains three images of the same scene. We removed a few samples that had no object in them after it being dropped.
6. For comparison, PhaseSpace is rated for a position accuracy of around 20 μm but requires markers and a complex setup.
7. Some methods use iterative re-planning to partially mitigate this issue.

ORCID iDs

Arthur Petron https://orcid.org/0000-0001-9664-5097
Matthias Plappert https://orcid.org/0000-0002-0751-8094

References

