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Abstract

The purpose of this technical report is two-fold. First of all, it introduces a suite
of challenging continuous control tasks (integrated with OpenAI Gym) based on
currently existing robotics hardware. The tasks include pushing, sliding and pick
& place with a Fetch robotic arm as well as in-hand object manipulation with
a Shadow Dexterous Hand. All tasks have sparse binary rewards and follow a
Multi-Goal Reinforcement Learning (RL) framework in which an agent is told
what to do using an additional input.
The second part of the paper presents a set of concrete research ideas for improv-
ing RL algorithms, most of which are related to Multi-Goal RL and Hindsight
Experience Replay.

1 Environments

All environments are released as part of OpenAI Gym1 (Brockman et al., 2016) and use the MuJoCo
(Todorov et al., 2012) physics engine for fast and accurate simulation. A video presenting the new
environments can be found at https://www.youtube.com/watch?v=8Np3eC_PTFo.

1.1 Fetch environments

The Fetch environments are based on the 7-DoF Fetch robotics arm,2 which has a two-fingered
parallel gripper. They are very similar to the tasks used in Andrychowicz et al. (2017) but we have
added an additional reaching task and the pick & place task is a bit different.3

In all Fetch tasks, the goal is 3-dimensional and describes the desired position of the object (or the
end-effector for reaching). Rewards are sparse and binary: The agent obtains a reward of −1 if
the object is not at the target location (within a tolerance of 5 cm) and 0 otherwise. Actions are
4-dimensional: 3 dimensions specify the desired gripper movement in Cartesian coordinates and
the last dimension controls opening and closing of the gripper. We apply the same action in 20
subsequent simulator steps (with ∆t = 0.002 each) before returning control to the agent, i.e. the
agent’s action frequency is f = 25 Hz. Observations include the Cartesian position of the gripper, its
linear velocity as well as the position and linear velocity of the robot’s gripper. If an object is present,
we also include the object’s Cartesian position and rotation using Euler angles, its linear and angular
velocities, as well as its position and linear velocities relative to gripper.

1https://github.com/openai/gym
2http://fetchrobotics.com/
3In Andrychowicz et al. (2017) training on this task relied on starting some of the training episodes from a

state in which the box is already grasped. This is not necessary for successful training if the target position of
the box is sometimes in the air and sometimes on the table and we do not use this technique anymore.

https://www.youtube.com/watch?v=8Np3eC_PTFo
https://github.com/openai/gym
http://fetchrobotics.com/


Figure 1: The four proposed Fetch environments: FetchReach, FetchPush, FetchSlide, and
FetchPickAndPlace.

Reaching (FetchReach) The task is to move the gripper to a target position. This task is very easy
to learn and is therefore a suitable benchmark to ensure that a new idea works at all.4

Pushing (FetchPush) A box is placed on a table in front of the robot and the task is to move it to
a target location on the table. The robot fingers are locked to prevent grasping. The learned behavior
is usually a mixture of pushing and rolling.

Sliding (FetchSlide) A puck is placed on a long slippery table and the target position is outside
of the robot’s reach so that it has to hit the puck with such a force that it slides and then stops at the
target location due to friction.

Pick & Place (FetchPickAndPlace) The task is to grasp a box and move it to the target location
which may be located on the table surface or in the air above it.

1.2 Hand environments

These environments are based on the Shadow Dexterous Hand,5 which is an anthropomorphic robotic
hand with 24 degrees of freedom. Of those 24 joints, 20 can be can be controlled independently
whereas the remaining ones are coupled joints.

In all hand tasks, rewards are sparse and binary: The agent obtains a reward of −1 if the goal has
been achieved (within some task-specific tolerance) and 0 otherwise. Actions are 20-dimensional:
We use absolute position control for all non-coupled joints of the hand. We apply the same action
in 20 subsequent simulator steps (with ∆t = 0.002 each) before returning control to the agent, i.e.
the agent’s action frequency is f = 25 Hz. Observations include the 24 positions and velocities
of the robot’s joints. In case of an object that is being manipulated, we also include its Cartesian
position and rotation represented by a quaternion (hence 7-dimensional) as well as its linear and
angular velocities. In the reaching task, we include the Cartesian position of all 5 fingertips.

Reaching (HandReach) A simple task in which the goal is 15-dimensional and contains the target
Cartesian position of each fingertip of the hand. Similarly to the FetchReach task, this task is
relatively easy to learn. A goal is considered achieved if the mean distance between fingertips and
their desired position is less than 1 cm.

Block manipulation (HandManipulateBlock) In the block manipulation task, a block is placed
on the palm of the hand. The task is to then manipulate the block such that a target pose is achieved.
The goal is 7-dimensional and includes the target position (in Cartesian coordinates) and target
rotation (in quaternions). We include multiple variants with increasing levels of difficulty:

• HandManipulateBlockRotateZ Random target rotation around the z axis of the block.
No target position.

• HandManipulateBlockRotateParallel Random target rotation around the z axis of the
block and axis-aligned target rotations for the x and y axes. No target position.

• HandManipulateBlockRotateXYZ Random target rotation for all axes of the block. No
target position.

4That being said, we have found that is so easy that even partially broken implementations sometimes learn
successful policies, so no conclusions should be drawn from this task alone.

5https://www.shadowrobot.com/products/dexterous-hand/
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Figure 2: The four proposed Shadow Dexterous Hand environments: HandReach,
HandManipulateBlock, HandManipulateEgg, and HandManipulatePen.

• HandManipulateBlockFull Random target rotation for all axes of the block. Random
target position.

A goal is considered achieved if the distance between the block’s position and its desired position is
less than 1 cm (applicable only in the Full variant) and the difference in rotation is less than 0.1 rad.

Egg manipulation (HandManipulateEgg) The objective here is similar to the block task but
instead of a block an egg-shaped object is used. We find that the object geometry makes a significant
differences in how hard the problem is and the egg is probably the easiest object. The goal is again
7-dimensional and includes the target position (in Cartesian coordinates) and target rotation (in
quaternions). We include multiple variants with increasing levels of difficulty:

• HandManipulateEggRotate Random target rotation for all axes of the egg. No target
position.

• HandManipulateBlockFull Random target rotation for all axes of the egg. Random target
position.

A goal is considered achieved if the distance between the egg’s position and its desired position is
less than 1 cm (applicable only in the Full variant) and the difference in rotation is less than 0.1 rad.

Pen manipulation (HandManipulatePen) Another manipulation, this time using a pen instead
of a block or an egg. Grasping the pen is quite hard since it easily falls off the hand and can easily
collide and get stuck between other fingers. The goal is 7-dimensional and includes the target position
(in Cartesian coordinates) and target rotation (in quaternions). We include multiple variants with
increasing levels of difficulty:

• HandManipulatePenRotate Random target rotation x and y axes of the pen and no target
rotation around the z axis. No target position.

• HandManipulateBlockFull Random target rotation x and y axes of the pen and no target
rotation around the z axis. Random target position.

A goal is considered achieved if the distance between the pen’s position and its desired position is
less than 5 cm (applicable only in the Full variant) and the difference in rotation, ignoring the z
axis,6 is less than 0.1 rad.

1.3 Multi-goal environment interface

All environments use goals that describe the desired outcome of a task. For example, in the
FetchReach task, the desired target position is described by a 3-dimensional goal. While our
environments are fully compatible with the OpenAI Gym API, we slightly extend upon it to support
this new type of environment. All environments extend the newly introduced gym.GoalEnv.

Goal-aware observation space First, it enforces a constraint on the observation space. More
concretely, it requires that the observation space is of type gym.spaces.Dict space, with at least
the following three keys:

• observation: The actual observation of the environment, For example robot state and
position of objects.

6The z axis of the pen is parallel to its body and goes through its tip to its opposite end.
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Figure 3: Median test success rate (line) with interquartile range (shaded area) for all four Fetch
environments.

• desired_goal: The goal that the agent has to achieve. In case of FetchReach, this would
be the 3-dimensional target position.

• achieved_goal: The goal that the agent has currently achieved instead. In case of
FetchReach, this is the position of the robots end effector. Ideally, this would be the
same as desired_goal as quickly as possible.

Exposed reward function Second, we expose the reward function in a way that allows for re-
computing the reward with different goals. This is a necessary requirement for HER-style algorithms
which substitute goals. A detailed example is available in Appendix A

Compatibility with standard RL algorithms Since OpenAI Gym is commonly supported in most
RL algorithm frameworks and tools like OpenAI Baselines (Dhariwal et al., 2017), we include a
simple wrapper that converts the new dictionary-based goal observation space into a more common
array representation. A detailed example is available in Appendix A.

1.4 Benchmark results
We evaluate the performance of DDPG with and without Hindsight Experience Re-
play (HER, Andrychowicz et al. (2017)) on all environments with all its variants. We compare
the following four configurations:

• DDPG+HER with sparse rewards
• DDPG+HER with dense rewards
• DDPG with sparse rewards
• DDPG with dense rewards

Detailed hyperparameters can be found in Appendix B.

For all environments, we train on a single machine with 19 CPU cores. Each core generates experi-
ence using two parallel rollouts and uses MPI for synchronization. For FetchReach, FetchPush,
FetchSlide, FetchPickAndPlace, and HandReach, we train for 50 epochs (one epoch consists of
50 full episodes), which amounts to a total of 4.75 · 106 timesteps. For the remaining environments,
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Figure 4: Median test success rate (line) with interquartile range (shaded area) for all four Fetch
environments.

we train for 200 epochs, which amounts to a total of 38 · 106 timesteps. We evaluate the performance
after each epoch by performing 10 deterministic test rollouts per MPI worker and then compute the
test success rate by averaging across rollouts and MPI workers. Our implementation is available
as part of OpenAI Baselines7 (Dhariwal et al., 2017). In all cases, we repeat an experiment with 5
different random seeds and report results by computing the median test success rate as well as the
interquartile range.

Figure 3 depicts the median test success rate for all four Fetch environments. FetchReach is clearly
a very simple environment and can easily be solved by all four configurations. On the remaining
environments, DDPG+HER clearly outperforms all other configurations. Interestingly, DDPG+HER
performs best if the reward structure is sparse but is also able to successfully learn from dense rewards.
For vanilla DDPG, it is typically easier to learn from dense rewards with sparse rewards being more
challenging.

Figure 4 depicts the median test success rate for all four hand environments. Similar to the Fetch
environments, DDPG+HER significantly outperforms the DDPG baseline. In fact, the baseline often
is not able to learn the problem at all. Similar to before, the sparse reward structure works significantly
better than the dense reward when using HER. HER is able to learn partly successful policies on all
environments but especially HandManipulatePen is especially challenging and we are not able to
fully solve it. Note that we do not depict results for all variants of the four environments in this figure.
A complete set of plots for all environments and their variants can be found in Appendix C.

We believe the reason why DDPG+HER typically performs better with sparse rewards is mainly due
to the following two reasons:

• Learning the critic is much simpler for sparse rewards. In the dense case, the critic has
to approximate a highly non-linear function that includes the Euclidean distance between
positions and the difference between two quaternions for rotations. On the other hand,
learning the sparse return is much simpler since the critic only has to differentiate between
successful and failed states.

7https://github.com/openai/baselines

5

https://github.com/openai/baselines


• A dense reward biases the policy towards a specific strategy. For instance, it may be
beneficial to first grasp an object properly and then start rotating it towards the desired
goal. The dense reward however encourages the policy to chose a strategy that achieves the
desired goal directly.

2 Request for Research

Deciding which problem is worth working on is probably the hardest part of doing research. Below we
present a set of research problems which we believe can lead to widely-applicable RL improvements.
For each problem we propose at least one potential solution but solving many of them will require
inventing new ideas. To make tracking the progress of work on these ideas easier, we would like to
ask authors to cite this report when publishing related research.

Automatic hindsight goals generation In Andrychowicz et al. (2017) the goals used for HER
were generated using a hand-crafted heuristic, e.g. replaying with a goal which was achieved at a
random future timestep in the episode. Instead, we could learn which goals are most valuable for
replay. They could be chosen from the goals achieved or seen during training or generated by a
separate neural network given a transition as input. The biggest question is how to judge which goals
are most valuable for replay. One option would be to train the generator to maximize the Bellman
error. This bears a lot of similarity to Prioritized Experience Replay (Schaul et al., 2015b) and we
expect that some techniques from this paper may be useful here.

Unbiased HER HER changes the joint distribution of replayed (state, action, next_state, goal)
tuples in an unprincipled way. This could, in theory, make training impossible in extremely stochastic
environment albeit we have not noticed this in practice. Consider an environment in which there is a
special action which takes the agent to a random state and the episode ends after that. Such an action
would seem to be perfect in hindsight if we replay with the goal achieved by the agent in the future.
How to avoid this problem? One potential approach would be to use importance sampling to cancel
the sampling bias but this would probably lead to prohibitively high variance of the gradient.

HER+HRL Hierarchical Actor-Critic (Levy et al., 2017) showed some promising results in ap-
plying HER in Hierarchical RL setup. One possible extension of this work would be to replace in
hindsight not only goals, but also higher-level actions, e.g. if the higher level asked the lower level
to reach state A, but some other state B was reached, we could replay this episode replacing the
higher-level action with B. This could allow the higher level to learn even when the lower level policy
is very bad but is not very principled and could make training unstable.

Richer value functions UVFA (Schaul et al., 2015a) extended value functions to multiple goals,
while TDM (Pong et al., 2018) extended them to different time horizons. Both of these innovations
can make training easier, despite the fact that the learned function is more complicated. What else
could we fed to the value function to improve the sample-efficiency? How about discount factor or
success threshold for binary rewards?

Faster information propagation Most state-of-the-art off-policy RL algorithms use target net-
works to stabilize training (e.g. DQN (Mnih et al., 2015) or DDPG (Lillicrap et al., 2015)). This,
however, comes at a price of limiting the maximum learning speed of the algorithm as each target
network update sends the information about returns only one step backward in time (if one-step boot-
strapping is used). We noticed that the learning speed of DDPG+HER in the early stages of training is
often proportional to the frequency of target network updates8 but excessive frequency/magnitude of
target network updates leads to unstable training and worse final performance. How can we adapt the
frequency of target network updates (or the moving average coefficient used to update the network)
to maximize the training speed? Are there better ways to update the target network than a simple
replacement or a moving average over time? Are there other ways to stabilize training which does
not limit the learning speed (e.g. clipped objective similar to the one used in PPO (Schulman et al.,
2017b))?

8Or to 1/(1 − averaging_coefficient) if target networks is computed using a moving average of the main
network’s parameters.
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HER + multi-step returns HER generates data which is extremely off-policy9 and therefore multi-
step returns can not be used unless we employ some correction factors like importance sampling.
While there are many solutions for dealing with off-policies of the data (e.g. Munos et al. (2016)),
it is not clear if they would perform well in the setup where the training data is so far from being
on-policy. Another approach would be to use multi-step optimality tightening inequalities (He et al.,
2016). Using multi-step returns can be beneficial because the decreased frequency of bootstraping
can lead to less biased gradients. Moreover, it accelerates the transfer of information about the returns
backwards in time which, accordingly to our experiment, is often the limiting factor in DDPG+HER
training (compare previous paragraph).

On-policy HER How to combine HER with state-of-the-art on-policy RL algorithms like
PPO (Schulman et al., 2017b)? Some preliminary results with vanilla Policy Gradients were presented
by Rauber et al. (2017), but this approach needs to be tested on more challenging environments like
the ones proposed in this report. One possible option would also be to to use techniques similar to the
ones employed in IPG (Gu et al., 2017).

Combine HER with recent improvements in RL It would be interesting to see how recent
improvements in RL perform while combined with HER. The list of potential improvements is long
e.g. Prioritized Experience Replay (Schaul et al., 2015b), distributional RL (Bellemare et al., 2017),
entropy-regularized RL (Schulman et al., 2017a), or reverse curriculum generation (Florensa et al.,
2017).

RL with very frequent actions RL algorithms are very sensitive to the frequency of taking actions
which is why frame skip technique is usually used on Atari (Mnih et al., 2015). In continuous control
domains, the performance goes to zero as the frequency of taking actions goes to infinity, which is
caused by two factors: inconsistent exploration and the necessity to bootstrap more times to propagate
information about returns backward in time. How to design a sample-efficient RL algorithm which
can retain its performance even when the frequency of taking actions goes to infinity? The problem
of exploration can be addressed by using parameters noise for exploration (Plappert et al., 2017) and
faster information propagation could be achieved by employing multi-step returns. Other approach
could be an adaptive and learnable frame skip.
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A Goal-based API Examples
Exposed reward function The following example demonstrates how the exposed reward function
can be used to re-compute a reward with substituted goals. The info dictionary can be used to store
additional information that may be necessary to re-compute the reward but that is independent of the
goal, e.g. state derived from the simulation.

import gym

env = gym . make ( ’ FetchReach−v0 ’ )
env . r e s e t ( )
obs , reward , done , i n f o = env . s t e p (

env . a c t i o n _ s p a c e . sample ( ) )

# The f o l l o w i n g a lways has t o ho ld :
a s s e r t r eward == env . compute_reward (

obs [ ’ a c h i e v e d _ g o a l ’ ] , obs [ ’ d e s i r e d _ g o a l ’ ] , i n f o )

# . . . b u t you can a l s o s u b s t i t u t e g o a l s :
s u b s t i t u t e _ g o a l = obs [ ’ a c h i e v e d _ g o a l ’ ] . copy ( )
s u b s t i t u t e _ r e w a r d = env . compute_reward (

obs [ ’ a c h i e v e d _ g o a l ’ ] , s u b s t i t u t e _ g o a l , i n f o )

Compatibility with standard RL algorithms The following example demonstrates how
to wrap the new goal-based environments to make their observation spaces compatible
with existing implementations. To do so, simply wrap any goal-based environment with
gym.wrappers.FlattenDictWrapper and specify the desired keys of the dictionary that you
would like to use.

import gym

env = gym . make ( ’ FetchReach−v0 ’ )
p r i n t ( type ( env . r e s e t ( ) ) )
# p r i n t s "< c l a s s ’ d i c t ’>"

env = gym . w r a p p e r s . F l a t t e n D i c t W r a p p e r (
env , [ ’ o b s e r v a t i o n ’ , ’ d e s i r e d _ g o a l ’ ] )

ob = env . r e s e t ( )
p r i n t ( type ( ob ) , ob . shape )
# p r i n t s "< c l a s s ’ numpy . ndarray ’> ( 1 3 , ) "

B Hyperparameters
To ensure a fair comparison, we perform a hyperparameter search over the following parameters:

• Actor learning rate: {1 · 10−4, 3 · 10−4, 6 · 10−4, 1 · 10−3, 3 · 10−3, 6 · 10−3, 1 · 10−2}
• Critic learning rate: {1 · 10−4, 3 · 10−4, 6 · 10−4, 1 · 10−3, 3 · 10−3, 6 · 10−3, 1 · 10−2}
• Polyak-averaging coefficient τ : {0.9, 0.93, 0.95, 0.97, 0.99}
• Batch size: {32, 64, 128, 256}
• Probability of random action: {0, 0.1, 0.2, 0.3, 0.4}
• Scale of additive Gaussian noise: σ: {0, 0.1, 0.2, 0.3, 0.4}
• Action L2 norm coefficient: {0, 0.01, 0.03, 0.1, 0.3, 0.6, 1.}

Since searching all possible combinations exhaustivley is intractable, we randomly sample 40 com-
binations and train a policy on the HandManipulateBlockRotateZ-v0 environment for all four
configurations (DDPG+HER sparse, DDPG+HER dense, DDPG sparse, DDPG dense). We picked
this environment since all configurations are capable of learning on this environment. For each
configuration and combination we train with 3 random seeds and average performance across this. To
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select the best hyperparameter combination, we numerically compute the area under the test success
rate curve and select the combination that achieves the best performance across all tasks.

All experiments in this paper use the following hyperparameters, which have been found by the
aforementioned search:

• Actor and critic networks: 3 layers with 256 units each and ReLU non-linearities
• Adam optimizer (Kingma and Ba, 2014) with 1 · 10−3 for training both actor and critic
• Buffer size: 106 transitions
• Polyak-averaging coefficient: 0.95

• Action L2 norm coefficient: 1.0

• Observation clipping: [−200, 200]

• Batch size: 256

• Rollouts per MPI worker: 2

• Number of MPI workers: 19

• Cycles per epoch: 50

• Batches per cycle: 40

• Test rollouts per epoch: 10

• Probability of random actions: 0.3

• Scale of additive Gaussian noise: 0.2

• Probability of HER experience replay: 0.8

• Normalized clipping: [−5, 5]

All hyperparameters are described in greater detail in Andrychowicz et al. (2017).

C Full Benchmark Results
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