
Parameter Space Noise for Exploration
in Deep Reinforcement Learning

Master Thesis of

Matthias Plappert

At the Department of Informatics
Institute for Anthropomatics and Robotics (IAR)

High Performance Humanoid Technologies Lab (H2T)
Karlsruhe Institute of Technology (KIT)

Karlsruhe, Germany

OpenAI
San Francisco, United States

Referee: Prof. Dr.-Ing. Tamim Asfour
First advisor: Dr. Marcin Andrychowicz
Second advisor: Prof. Pieter Abbeel

Duration: June 1st, 2017 – November 30th, 2017

KIT — The Research University in the Helmholtz Association www.kit.edu

Ich versichere hiermit, dass ich die Arbeit selbstständig verfasst habe, keine anderen als
die angegebenen Quellen und Hilfsmittel benutzt habe, die wörtlich oder inhaltlich über-
nommenen Stellen als solche kenntlich gemacht habe und die Satzung des Karlsruher
Instituts für Technologie zur Sicherung guter wissentschaftlicher Praxis beachtet habe.

Karlsruhe, den 30.11.2017

. .
(Matthias Plappert)

Kurzzusammenfassung

Reinforcement Learning bietet ein abstraktes Rahmenwerk, um eine Vielzahl von Proble-
men zu lösen. Beispiele reichen hier von der Steuerung von Produktionsprozessen, dem
Handeln von Wertpapieren, bis hin zum Spielen von Brettspielen wie Backgammon und
Go auf professionellem Niveau. In der Robotik stellt Reinforcement Learning eine vielver-
sprechende Möglichkeit dar, selbstlernende Robot zu realisieren.

Der Erfolg von Reinforcement Learning-Algorithmen hängt entscheidend von derer Fähig-
keit zur Exploration ab. Da der Algorithmus zu Beginn keinerlei Information über seine
Umgebung hat, müssen diese zunächst gesammelt werden. Obwohl eine Vielzahl von Ex-
plorationsmethoden existieren, finden in der Praxis vor allem immer noch simple Methoden
Anwendung, welche die Aktionen, die der Algorithmus wählt, verrauschen. Mithilfe dieser
so gesammelten Informationen wird schließlich die Strategie, nach der der Algorithmus
handelt, verbessert. Oft wird diese Strategie durch Funktionsapproximatoren realisiert,
beispielsweise (tiefe) neuronale Netze.

In der hier vorliegenden Arbeit erforschen wir, ob anstatt Exploration durch Verrauschen
der Aktionen auch Exploration durch Verrauschen der Gewichte einer parametrisierten
Strategie erreicht werden kann. In einer theoretischen Diskussion zeigen wir auf, dass
solch ein Verfahren zu konsistenterer Exploration im Vergleich zu traditionellen Verfahren
führt. Anschließend benennen, analysieren, und lösen wir zwei wesentliche Probleme, die
beim Verrauschen der Gewichte tiefer neuronaler Netze eine wichtige Rolle spielen.

Die theoretischen Überlegungen werden anschließend experimentell validiert. Zunächst
zeigen wir, dass unser Verfahren signifikant anderes Explorationsverhalten aufweist, als
solche, welche im Aktionsraum explorieren. Anschließende Experimente zeigen, dass Rau-
schen im Parameterraum mit modernen Reinforcement Learning-Algorithmen wie Deep Q-
Networks (DQN) oder Deep Deterministic Policy Gradient (DDPG) erfolgreich kombiniert
werden können um anspruchsvolle Probleme erfolgreich zu erlernen. Weitere Experimente
zeigen, dass unser hier vorgestelltes Verfahren vor allem bei Problemen, welche nur wenige
Lernsignale absondern, traditionellen Methoden deutlich überlegen ist. Zuletzt evaluieren
wir das Verhalten unseres Verfahren mithilfe dreier realistischer Roboter-Manipulations-
Experimente mit komplizierten Kontaktdynamiken und dünnbesetzten Belohnungen. In
diesen Experimenten zeigt sich, dass allein durch Exploration durch Parameterrauschen in
einem Teil dieser extrem fordernden Probleme gelernt werden kann. Weiterhin lässt sich
Parameterrauschen mit anderen Explorationsmethoden wie Hindsight Experience Replay
(HER) kombinieren und führt damit insgesamt zu verbessertem Explorationsverhalten im
Vergleich zu HER mit traditionellem Aktionsrauschen.

Die hier vorliegende Arbeit zeigt, dass Parameterrauschen erfolgreich zur Exploration in
Anwendungen des Reinforcement Learnings verwendet werden kann und in der Regel tra-
ditionellen Methoden, welche Rauschen im Aktionsraum verwenden, überlegen ist. Unsere
Experimente zeigen weiterhin, dass Parameterrauschen sowohl in Problemen mit diskre-
ten wie auch kontinuierlichen Aktionsräumen Anwendung findet und sich erfolgreich mit
komplexeren und anwendungsspezifischeren Explorationsmethoden kombinieren lässt.

v

Abstract

The success of any reinforcement learning algorithm hinges on its ability to explore effi-
ciently. While many sophisticated approaches have been proposed in recent years, today’s
state-of-the-art algorithms still rely on traditional action space noise due to its simplicity.
In this thesis, we propose a novel method: parameter space noise. Parameter space noise
is conceptually simple yet allows state-of-the-art algorithms to learn in environments in
which traditional action space noise exploration fails. We theoretically justify why we ex-
pect this approach to outperform traditional action space noise, analyze potential pitfalls
when applying it to policies realized by deep neural networks, and propose approaches that
mitigate these problems. Next, we evaluate our proposed approach on a large variety of
different environments where we show that parameter space noise indeed outperforms ac-
tion space noise in the majority of cases. We also demonstrate that parameter space noise
can be combined with other exploration methods and show that this combination is capa-
ble of learning successful strategies on a set of complex and realistic robot manipulation
tasks.

vii

Acknowledgement

I would like to thank the entire OpenAI team. In particular, I would like to thank Rein
Houthooft, Prafulla Dhariwal, Szymon Sidor, Richard Y. Chen, Xi Chen, Pieter Abbeel,
Alex Ray, Bob McGrew, Jonas Schneider, Josh Tobin, Peter Welinder, Wojciech Zaremba,
Filip Wolski, Vikash Kumar, Ankur Handa, Greg Brockman, Ilya Sutskever, Jack Clark,
Ryan Lowe, Smitha Milli, Avital Oliver, Jean Harb, and Vicki Cheung, who have all helped
to make my time at OpenAI a success.

Marcin Andrychowicz has been an amazing advisor during my time at OpenAI and I would
like to thank him in particular for many insightful discussions, for always providing very
thoughtful advice, and for always asking the right questions to reveal the not yet fully
understood parts of my research.

A very special thank you to Christian Mandery and Tamim Asfour, who I have met
during my Bachelor thesis and who have both been amazing advisors since. Without your
continued support, I would simply not be where I am today.

And finally, last but by no means least, to Laura Tessin, who has always supported me no
matter what. Thank you for everything!

ix

Contents

1 Introduction 1

2 Background 3
2.1 Reinforcement Learning . 3
2.2 Deep Learning . 4
2.3 Deep Reinforcement Learning . 5

2.3.1 Deep Q-Networks (DQN) . 5
2.3.2 Bootstrapped DQN . 7
2.3.3 Deep Deterministic Policy Gradient (DDPG) 7
2.3.4 Hindsight Experience Replay (HER) 8

3 Related Work 11
3.1 Overview . 11
3.2 Near-Optimal Reinforcement Learning . 11
3.3 Exploration in Deep Reinforcement Learning 12
3.4 Parameter Perturbations . 14

4 Parameter Space Noise for Exploration 15
4.1 Background and Formulation . 15
4.2 Perturbing Deep Neural Networks . 17
4.3 Adaptive Scaling . 18

4.3.1 A Distance Measure for DQN . 19
4.3.2 A Distance Measure for DDPG . 21

5 Experiments 23
5.1 A First Toy Problem . 23

5.1.1 Experimental Setup . 24
5.1.2 Results . 24

5.2 Arcade Learning Environment Experiments 25
5.2.1 Environment . 25
5.2.2 Experimental Setup . 27
5.2.3 Results . 28

5.3 Continuous Control Experiments . 32
5.3.1 Environments . 32

5.3.1.1 OpenAI Gym Continuous Control 32
5.3.1.2 Continuous Control with Sparse Rewards 34

5.3.2 Experimental Setup . 35
5.3.3 Results . 36

5.3.3.1 OpenAI Gym Continuous Control 36
5.3.3.2 Continuous Control with Sparse Rewards 39

xi

xii Contents

5.4 Robot Manipulation Experiments . 42
5.4.1 Environments . 42

5.4.1.1 Experimental Setup . 44
5.4.2 Results . 45

6 Conclusion 49
6.1 Summary . 49
6.2 Future Work . 50

xii

1. Introduction

In recent years, reinforcement learning has achieved impressive results on a wide variety of
challenging tasks like learning to play Atari video games directly from pixels [Mnih et al.,
2015], learning policies for complex continuous control problems that involve locomotion
and manipulation [Schulman et al., 2015a,c, Lillicrap et al., 2015, Gu et al., 2016, Heess
et al., 2017], and even beating professional Go players by training a system that only
plays against itself [Silver et al., 2017]. In robotics in particular, deep learning and deep
reinforcement learning have similarly achieved impressive results. Robots are now capable
of learning complex manipulation tasks like opening a bottle, putting cloths on a hanger,
and precisely fitting small pieces into a larger structures [Levine et al., 2015, 2016, Pinto
and Gupta, 2016].

However, the success of reinforcement learning hinges on the agent’s capabilities to ef-
fectively explore its environment. This is necessary because, initially, the agent has no
knowledge about its environment and has to try different strategies in order to find suc-
cessful ones. Even as learning progresses, it becomes important to strike a balance between
exploring and exploiting learned behavior, which is the long-standing exploration vs. ex-
ploitation dilemma [Kumar and Varaiya, 1986, Bertsekas, 1987, Thrun, 1992, Kearns and
Singh, 2002, Brafman and Tennenholtz, 2002].

In recent years, many sophisticated exploration strategies have been proposed that rely on
complex additional structures such as counting tables [Tang et al., 2016], density modeling
of the state space [Ostrovski et al., 2017], learned dynamics models [Houthooft et al., 2016,
Achiam and Sastry, 2017, Stadie et al., 2015], or self-supervised curiosity [Pathak et al.,
2017b] (see Chapter 3 for a more in-depth coverage). However, since these approaches are
often quite complicated and computationally expensive, simple action space exploration
like ε-greedy and additive Gaussian noise is still commonly found in almost all reinforce-
ment learning papers that are not specifically concerned with exploration. Additionally,
even these advanced exploration methods often require some form of “inner exploration”
method, by which we mean that they often extend the reward function but still rely on
traditional action space noise to find high reward states.

Given the importance of exploration in reinforcement learning and the fact that action
space noise is still omnipresent in today’s state-of-the-art algorithms, we believe it is worth-
while to reconsider the basic assumption that we should use action space noise [Rückstieß
et al., 2008]. In this thesis, we propose a novel method called parameter space noise, which
is designed to be a drop-in replacement for action space noise in current state-of-the-art

1

2 1. Introduction

deep reinforcement learning algorithms. Due to its conceptual simplicity and almost trivial
implementation, we believe that it is a promising candidate to replace traditional action
space noise.

This thesis is organized as follows. We first introduce and review the most important
concepts of reinforcement learning and deep learning in Chapter 2. In this section, we also
review important deep learning algorithms that are used throughout this thesis. Next, We
discuss related work, especially recent exploration methods in the context of deep reinforce-
ment learning, in Chapter 3. In the following section, Chapter 4, we introduce parameter
space noise for exploration, analyze it theoretically, discuss potential problems when ap-
plying it to policies realized through deep neural networks, and introduce approaches to
mitigate these problems. Chapter 5 evaluates the performance of the proposed parameter
space noise exploration. We show that our proposed method explores more efficiently in
a wide range of challenging environments. Our approach is applicable to both on- and
off-policy algorithms and works with discrete and continuous action spaces. We further
show that parameter space noise can learn successful strategies on environments with ex-
tremely sparse rewards where exploration is truly important. A final set of experiments
demonstrates that parameter space noise can be combined with advanced techniques for
exploration like Hindsight Experience Replay (HER, Andrychowicz et al. [2017]) by ap-
plying it to a set of challenging robot manipulation tasks with realistic real-world physics.
Finally, we summarize our work in Chapter 6 and point out promising directions for future
work.

2

2. Background

2.1 Reinforcement Learning

In reinforcement learning [Sutton and Barto, 1998], an agent interacts with an environment
by executing actions. The environment in return yields its new state as well as a scalar
reward. Crucially, the agent can only interact with the environment through actions;
it cannot modify the way the environment works or the way it yields rewards. In this
interaction, the agent aims to maximize the total return (i.e. the sum of rewards) it obtains.
This fundamental interaction between agent and environment is depicted in Figure 2.1.

Agent Environment

at

st+1, rt

Figure 2.1: The fundamental interaction in reinforcement learning between agent and envi-
ronment. The agent choses an action at and sends it to the environment. The environment
then yields the new state st+1 as well as the reward that was obtained rt := r(st,at). This
process is repeated for all time steps.

We now formalize the aforementioned description of agent and environment and its inter-
action. A Markov Decision Process (MDP) is defined as M = (S,A,P, ρ0, r) where S is
the state space and A is the action space. We define the reward function as r : S ×A 7→ R
and sometimes write rt := r(st,at) for the reward obtained in time step t. ρ0 : S 7→ [0, 1]
is the probability distribution over initial states. Finally, P : S × A × S 7→ [0, 1] denotes
the transition probability distribution, i.e. given state st and at, how likely do we end up
in state st+1. Notice the Markov property: The next state only depends on the current
state and action.

In reinforcement learning, we typically wish to find a policy π : S × A 7→ [0, 1] that

3

4 2. Background

maximizes the expected discounted return:

η(π) := Es0∼ρ0,at∼π(·|st),st+1∼P(·|st,at)

[
T−1∑
t=0

γtr(st,at)

]
. (2.1)

To simplify notation, we sometimes use τπ = (s0,a0, s1,a1, . . . , st−1,at−1, sT) to denote
a trajectory with s0 ∼ ρ0, at ∼ π(· | st), and st+1 ∼ P(· | st,at). Additionally, we write
r(sT ,aT) for the terminal reward although it has no dependence on aT . γ ∈ [0, 1) is a
discount factor which ensures that the return is bound even if t→∞ and can be used to
select a time horizon over which we optimize.1 T denotes the time horizon of the MDP.
Finally, we sometimes write π : S 7→ A to denote a deterministic policy.

An important problem in reinforcement learning is that of exploration vs. exploitation.
More concretely, we generally do not have any information about ρ0(s0) and P(st+1 | st,at)
initially. The agent thus has to explore its environment in order to find states that yield
high rewards. On the other hand, the agent also has to exploit what it has already learned
in order to achieve high rewards. To complicate things further, the state space can often
be extremely large and may even be infinite.

2.2 Deep Learning

Deep learning [LeCun et al., 2015, Goodfellow et al., 2016] has been exceedingly successful
in recent years in a variety of domains like image classification [Krizhevsky et al., 2012,
Szegedy et al., 2017], speech recognition [Hinton et al., 2012, Graves et al., 2013], and
machine translation [Sutskever et al., 2014, Bahdanau et al., 2014]. Deep learning utilizes
artificial neural networks (ANNs or NNs) that have been around for centuries [McCul-
loch and Pitts, 1943, Rosenblatt, 1958]. However, instead of using only shallow networks,
deep learning uses networks that consist of many layer. This allows networks to learn fea-
ture representations themselves in contrast to more traditional approaches that required
cumbersome and inefficient feature engineering. While making networks deeper seems
trivial at first, it actually took significant effort to overcome problems like vanishing gradi-
ents [Hochreiter, 1998, Maas et al., 2013], instability in training due to covariate shift [Ioffe
and Szegedy, 2015], and flaky optimization [Sutskever et al., 2013]. New architectures like
convolutional neural networks (CNNs, Sermanet et al. [2012]) and long-short term memory
(LSTM, Hochreiter and Schmidhuber [1997]) further pushed the field forward.

However, the basic building block of a neural network is still relatively simple. A fully
connected layer consists of N input units that are, well, fully connected to M output units:

h = Wx+ b, (2.2)

where W ∈ RM×N is the weight matrix, b ∈ RM is the bias vector, x ∈ RN is the input
vector and h ∈ RM is the hidden (or output) vector. In essence, Equation (2.2) describes
an affine transformation, with learnable parameters W and b. Figure 2.2 depicts the
schematics of a neural network with two hidden layers.

In order to learn non-linear functions and in order to meaningfully combine many layers,2

a non-linearity is added on top of the affine transformation:

h = f (Wx+ b) , (2.3)

1For example, if we set γ = 0, we effectively only consider the immediate reward and greedily optimize
for that.

2In theory, combining multiple linear layers does not make sense since it could be re-written as a single
linear layer. However, and interestingly, computers only approximate floating point numbers, which can
actually be seen as an implicit non-linearity. See https://blog.openai.com/nonlinear-computation-
in-linear-networks/ for details on this matter.

4

https://blog.openai.com/nonlinear-computation-in-linear-networks/
https://blog.openai.com/nonlinear-computation-in-linear-networks/

2.3. Deep Reinforcement Learning 5

Figure 2.2: A neural network with an input layer (in green), two fully connected hidden
layers (in blue), and an output layer (in red). The bias vectors are omitted for readability.

with f(·) being some non-linear and differentiable function, sometimes also referred to as
the activation function. Common choices are the hyperbolic tangent, the rectifier linear
unit, and the softmax activation function:

f(xi) = tanh(xi) f(xi) =

{
xi if xi ≥ 0,

0 otherwise
f(x) =

expx∑
i expxi

. (2.4)

In order to train such a network, a loss function has to be defined. The concrete loss
function depends on the use case. For a regression, a common choice is the squared error
between prediction (denoted as ŷ) and ground truth (denoted as y):

L = ‖y − ŷ‖2 . (2.5)

Since ŷ = gθ(x), where g(·) denotes the entire network and θ denotes all learnable pa-
rameters (e.g. W and b), we can differentiate L w.r.t. θ to obtain the gradient ∇θL.3

Since the gradient points in the direction of the largest increase, we can take a small step
in the opposite direction, thus iteratively minimizing the loss function and therefore the
prediction error:

θk+1 = θk − α∇θkL, (2.6)

where α ∈ R>0 is the learning rate and θk denotes the parameters of the network at the k-th
iteration of the optimization. The gradient computation itself can efficiently be carried out
using reverse-mode automatic differentiation [Linnainmaa, 1970], also commonly referred
to as back-propagation in the special case of neural networks [Rumelhart et al., 1988].

2.3 Deep Reinforcement Learning

While the previous section introduced the basic concepts behind reinforcement learning,
this section will discuss recent state-of-the-art algorithms that combine deep learning and
reinforcement learning. We will briefly review four concrete algorithms: Deep Q-Networks
(DQN, Section 2.3.1), Bootstrapped DQN (Section 2.3.2), Deep Deterministic Policy Gra-
dient (DDPG, Section 2.3.3), and Hindsight Experience Replay (HER, Section 2.3.4).

2.3.1 Deep Q-Networks (DQN)

Mnih et al. [2013, 2015] proposed Deep Q-Networks, which successfully learns to play Atari
games directly from pixels. In essence, DQN learns the Q-function, which is defined as:

Qπ(st,at) := r(st,at) + Eτπ
[
T−t∑
i=1

γt+ir(st+i,at+i)

]
. (2.7)

3This is why we require that the activation function is differentiable.

5

6 2. Background

Algorithm 1 Deep Q-learning with Experience Replay [Mnih et al., 2013, 2015]

Initialize replay memory D to capacity N
Initialize action-value function Qθ with random weights
for episode = 1, . . . ,M do

Receive initial state s0

for t = 0, . . . , T − 1 do
With probability ε select a random action at
otherwise select at = maxaQθ(st,a)
Execute action at and observe reward rt and next state st+1

Store transition (st,at, st+1, rt,) in D
Sample random mini-batch of transitions (si,ai, si+1, ri,) from D

Set yi =

{
ri for terminal si+1

ri + γmaxa'Qθ(si+1,a') for non-terminal si+1

Perform a gradient descent step on (yi −Qθ(si,ai))
2

In other words, the Q-function gives us the expected discounted reward if we take action at
in state st and follow policy π therein after. As it turns out, the Q-function can be written
recursively, in which form it is currently referred to as the Bellman equation [Sutton and
Barto, 1998]:

Qπ(st,at) := r(st,at) + γEst+1∼P(·|st,at),at+1∼π(st+1) [Qπ(st+1,at+1).] . (2.8)

Since DQN only considers the deterministic case, we will drop the expectations. Further-
more, notice that the Q-function is quite useful: Given Q, we can chose the the optimal
deterministic action as follows:

π(s) := argmax
a

Qπ(s,a). (2.9)

π can thus be implicitly be defined via Q. If the action space is small and discrete, we
can further quite easily find the optimal action. However, the state space may still be
extremely large, as is the case here since DQN learns directly from pixels. In DQN, the
Q-function is thus realized using a deep neural network in the hope that it generalizes to
previously unseen states during execution. Using the Bellman equation, the network is
then trained to minimize the following loss:

L =

(
r + γmax

a′
Qθ(s′,a′)−Qθ(s,a)

)2

. (2.10)

In order to be able to compute this, DQN stores the transition tuple (s,a, s′, r) in a
replay buffer. This also stabilizes the algorithm since samples are drawn uniformly from
the replay buffer and the gradient is estimated in typical mini-batch fashion using these
samples, thus de-correlating it. Furthermore, DQN uses the concept of a target network to
compute that is only updated occasionally to make the learning target (mostly) stationary.

In order to explore, DQN typically uses ε-greedy exploration which simply selects a random
action uniformly with probability ε and the greedy action otherwise. Exploration is covered
in greater detail in Section 4.1 since this thesis is largely concerned with it.

Algorithm 1 describes the entire algorithm in pseudo-code. For more details about hyper-
parameters and exact training procedures, please refer to Mnih et al. [2015]. DQN has also
been extended to overcome problems with overly optimistic estimations for Q [van Hasselt,
2010, van Hasselt et al., 2016], improved experience sampling with prioritized experience
replay [Schaul et al., 2015b], and improved architectures like dueling networks [Wang et al.,
2016]. In all cases, the changes are mostly of incremental nature and do not significantly
change the described mechanics of DQN.

6

2.3. Deep Reinforcement Learning 7

Algorithm 2 Bootstrapped DQN [Osband et al., 2016]

Given: a masking distribution M
Initialize replay memory D
Initialize K action-value functions (or heads) {Qk}Kk=1 with random weights
for episode = 1, . . . ,M do

Receive initial state s0

Pick a value function to act using k ∼ U ({1, . . . ,K})
for t = 0, . . . , T − 1 do

Select action at = maxaQk(st,a) according to selected head k
Execute action at and observe reward rt and next state st+1

Sample bootstrap mask mt ∼M
Store transition (st,at, st+1, rt,mt) in D
Sample a mini-batch from D and perform DQN optimization on {Qk | k ∈mi}

2.3.2 Bootstrapped DQN

Bootstrapped DQN [Osband et al., 2016] was proposed to improve the exploration behavior
of DQN. Instead of having a single estimate for Q like in regular DQN, Bootstrapped
DQN uses K networks or heads:4 {Qk}Kk=1. When generating a rollout, a specific k is
selected according to k ∼ U({1, . . . ,K}), where U(·) denotes the uniform distribution over
the specified set. This Qk is then used for the entirety of the rollout to select actions,
which works identical to regular DQN using Qk instead of Q. When storing a transition,
Bootstrapped DQN samples a mask from a masking distribution: m ∼ M with m ∈
{0, 1}K . During training, a transition is only used to train the subset {Qk | k ∈mi} of all
K network heads, where mi denotes the mask of a sampled transition.

Since all K heads have different initializations and are trained on different subsets of the
experienced data, different Qk will exhibit different behavior. However, since one Qk is
selected at the beginning of the episode, exploration will be consistent within the episode.
This allows Bootstrapped DQN to explore consistently within episodes but (hopefully)
still exhibits diverse behaviors across episodes.

Algorithm 2 describes the entire algorithm in pseudo-code. For more details about hyper-
parameters and exact training procedures, please refer to Osband et al. [2016].

2.3.3 Deep Deterministic Policy Gradient (DDPG)

In the previously describe DQN, finding the optimal action requires that we can efficiently
find the action that corresponds to the optimal Q-value. While this is quite simple for dis-
crete and relatively small action spaces (we can just compute all of them and pick the action
that corresponds to the maximum), the problem becomes intractable if A is continuous.
However, continuous action spaces are quite important in applications like robotics, where
discretization often is not desirable. Lillicrap et al. [2015] propose DDPG for continuous
control that utilizes Q-learning like DQN but relies on an actor-critic architecture.

More concretely, the critic still learns the Q-function as described in the previous section,
which we now denote as Qφ. Instead of maximizing over all possible actions (which is
intractable for continuous A), we utilize a different neural network, the actor, which we
denote as πθ: The loss for the critic is thus given as:

Lcritic =
(
r + γQφ

(
s′, πθ(s′)

)
−Qφ(s,a)

)2
, (2.11)

4A network with multiple heads shares early layers (e.g. the convolutional part), but has separate weights
for later layers (the heads).

7

8 2. Background

Algorithm 3 Deep Deterministic Policy Gradient with Experience Replay [Lillicrap et al.,
2015]

Initialize replay memory D to capacity N
Initialize critic network Qφ with random weights
Initialize actor network πθ with random weights
for episode = 1, . . . ,M do

Initialize a random process N for action exploration
Receive initial state s0

for t = 0, . . . , T − 1 do
Select action at = πθ(st) + Nt according to the current policy and exploration

noise
Execute action at and observe reward rt and next state st+1

Store transition (st,at, st+1, rt,) in D
Sample random mini-batch of transitions (si,ai, si+1, ri,) from D

Set yi =

{
ri for terminal si+1

ri + γQφ (si+1, πθ(st+1)) for non-terminal si+1

Update critic by performing a gradient descent step on (yi −Qφ(si,ai))
2

Update actor using the sampled policy gradient:

1

N

∑
i

∇θQφ(si, πθ(si))

which we can optimize for w.r.t. φ as previously described using a replay buffer that
stores (s,a, s′, r). Notice that this loss is almost identical to Equation (2.10), which again
highlights that both DQN and DDPG use Q-learning.

In contrast to DQN, DDPG uses an explicit policy, which is defined by the actor network
πθ. Since Q is a differentiable network, we can simply train π to maximize Q:

Lactor = −Qφ (s, πθ(s)) , (2.12)

which we minimize w.r.t. θ utilizing states s from the replay buffer. By applying the chain
rule, it becomes apparent that this is indeed the deterministic policy gradient described
by Silver et al. [2014].

DDPG uses additive Gaussian noise that may be correlated for exploration. Exploration
is covered in greater detail in Section 4.1 since this thesis is largely concerned with it.

Algorithm 3 describes the entire algorithm in pseudo-code. For more details about hyper-
parameters and exact training procedures, please refer to Lillicrap et al. [2015].

2.3.4 Hindsight Experience Replay (HER)

Hindsight Experience Replay (HER, Andrychowicz et al. [2017]) has recently been intro-
duced as a method that learns even in settings where rewards are extremely sparse. In
contrast to the previously described algorithms, HER is more of a meta-algorithm that
can be used in combination with any off-policy algorithm that utilizes experience replay.

The key insight that it builds on is the following: Assume you are learning to play ice
hockey and you are practicing to hit a goal. At first, you will likely not be successful and
the puck will end up in a relatively random place. If the reward were binary, i.e. 1 if
the goal was achieved and 0 if the goal was missed, you would not have learned anything
at all. You can, however, observe were the puck ended up and simply assume that you

8

2.3. Deep Reinforcement Learning 9

wanted to achieve this goal in the first place. This is of course not what you really wanted
to do, but at least you have now learned how to achieve this specific goal instead. HER
does precisely this: It replays with goals that were achieved even though they were not
initially desired, thus ensuring that there is always a reward signal even though the reward
structure is sparse as described before.

This can be formalized by first extending the policy to also consider a goal π : S×G×A 7→
[0, 1] or simply π : S×G 7→ A in the deterministic case. Here, g ∈ G denotes a goal that we
wish to achieve, for example the Cartesian position of the hockey puck from the previous
example. This concept has recently been introduced by Schaul et al. [2015a], who have
named it the Universal Value Function Approximator (UVFA).

In HER, a goal is sampled before an episode begins and kept constant. After the episode
is completed, the rollout is stored in the replay buffer as previously described with the ad-
dition of the goal. However, HER also re-samples a set of different goals using a sampling
strategy S and substitutes the original goal with a goal that was achieved during the exe-
cution of the current episode. Different sampling strategies are possible, but Andrychowicz
et al. [2017] show that a strategy that samples a goal from the future of the trajectory
performs well:

S (st, st+1, . . . , sT−1, sT) = m(si), i ∼ U ({t+ 1, . . . , T}) , (2.13)

where U(·) denotes the uniform distribution over the specified set and m : S 7→ G is a
function that converts an achieved state into the corresponding goal.

Since HER works with any off-policy algorithm, it can be used with DQN and DDPG. Al-
gorithm 4 describes the entire algorithm in pseudo-code. For more details about sampling
strategies and a more detailed description of the algorithm, please refer to Andrychowicz
et al. [2017].

Algorithm 4 Hindsight Experience Replay [Andrychowicz et al., 2017]

Given:

• an off-policy RL algorithm A, . e.g. DQN or DDPG

• a strategy S for sampling goals for replay, . e.g. Equation (2.13)

• a reward function r : S ×A× G → R.

Initialize A . e.g. initialize weights of neural networks
Initialize replay buffer D
for episode=1, . . . ,M do

Sample a goal g
Receive initial state s0

for t = 0, . . . , T − 1 do
Select action at according to A: at = π(st||g) . || denotes concatenation
Execute action at and observe next state st+1

Sample a mini-batch from D and perform optimization step of A
for t = 0, . . . , T − 1 do

rt = r(st,at, g)
Store transition (st||g,at, st+1||g, rt) in D . standard experience replay
Sample a set of additional goals for replay G := S(current episode)
for g' ∈ G do

r' = r(st,at, g')
Store transition (st||g',at, st+1||g', r') in D . HER

9

3. Related Work

3.1 Overview

The problem of exploration in reinforcement has been studied extensively throughout the
years. Its need arises since in typical reinforcement learning problems, no information
about the MDP is available a-priori. Instead, the agent has to actively explore in order to
discover behavior that leads to high returns. As learning progresses, the agent faces the
exploration vs. exploitation dilemma [Kumar and Varaiya, 1986, Bertsekas, 1987, Thrun,
1992]. In essence, the agent has to decide whether it should exploit by using its current
policy to select an action that it deems good to obtain a high return now or whether it
should execute a different action and hope to discover new information that leads to higher
returns in the future.

In general, one can differentiate between undirected and directed exploration [Thrun, 1992].
Examples for undirected exploration are ε-greedy exploration, Boltzmann exploration, and
additive Gaussian noise, all of which will be defined and discussed in greater depth in
Chapter 4. They all have in common that they utilize no exploration-specific knowledge
and rely on adding some randomness into the action that the agent performs in order to
achieve different outcomes, hence the name undirected. Directed exploration, on the other
hand, utilizes such information in order to explore more efficiently. The name directed
stems from the fact that these exploration schema typically actively seek out states that
promise to maximize some gain. Such exploration can be count-based (e.g. how often
has this action already been taken in this state), error-based (e.g. how big was the TD-
error for this state-action tuple) or recency-based (e.g. when was the last time I took this
action in this state) [Sutton and Barto, 1998]. This chapter provides just a brief summary
and recent advances of some of these concepts. For a more in-depth discussion of the
fundamentals of exploration, please refer to Thrun [1992] and Sutton and Barto [1998].

3.2 Near-Optimal Reinforcement Learning

A range of algorithms have been proposed that guarantee near-optimal reinforcement
learning in polynomial time. Kearns and Singh [2002] prove that such an algorithm does
indeed exist for general MDPs and show that it achieves near-optimal performance that is
polynomial in the time horizon T and the number of states S. They obtain an algorithm,
which they refer to as the Explicit Explore or Exploit (E3) algorithm, that resolves the
exploration vs. exploitation problem. Briefly speaking and slightly simplifying, E3 divides

11

12 3. Related Work

the state space into a set of known and unknown states. A state is considered known if
model of the dynamics, which is learned concurrently, accurately predicts the transitions
and rewards. During execution, the algorithm explores in unknown states by selecting the
action that has been used least (referred to as balanced wandering). For known states,
it exploits according to the current policy. While the resulting algorithm achieves near-
optimal exploration, its practicality is still limited to very small state spaces, requires
discrete action spaces, and adds additional complexity since a model of the dynamics has
to be maintained.

An idea that is similar in spirit has been proposed by Brafman and Tennenholtz [2002],
who refer to their algorithm as Rmax. Similar to E3, a model of the environment dynamics
is maintained and exploration vs. exploitation is resolved according to it. They propose
to initialize the model in optimistic fashion, i.e. for uncertain states assume a maximal
reward (hence the name) and then optimize their policy according to this model. Due
to this optimistic initialization, the agent is always driven towards states that are under-
explored. As the agent covers more and more states, it improves its model with the true
dynamics until it eventually is certain about a specific state and thus starts to exploit. This
technique is commonly referred to as optimism in the face of uncertainty and Brafman and
Tennenholtz [2002] prove that it achieves near-optimal return in polynomial time.

Kolter and Ng [2009] propose an algorithm that achieves near-Bayesian (and thus near-
optimal) exploration in polynomial time. In Bayesian model-based reinforcement learning,
one maintains a believe state about the model, which captures the uncertainty. In such a
setting, exploration vs. exploitation can be achieved by considering the distribution over
models and optimizing for the expected reward. While elegant, these methods are typically
intractable since the dimension of the believe state grows polynomially in the number of
states and actions. To overcome this, the authors propose to augment the reward function
with an Bayesian Exploration Bonus (BOB) and always greedily select actions according
to this objective. They show that their approach achieves near-Bayesian performance and
results in lower sample-complexity than the aforementioned approaches.

3.3 Exploration in Deep Reinforcement Learning

As noted in the previous section, near-optimal reinforcement learning becomes increasingly
difficult as the dimension of the state and action spaces increases. However, with the advent
of deep learning and deep reinforcement learning [Mnih et al., 2015, Schulman et al., 2015a,
Lillicrap et al., 2015], the state space is now typically extremely large or even infinite.
The same is true for the action space, e.g. for continuous control problems, which are
especially important in the field of robotics. This combinatorial explosion unfortunately
often renders these algorithms impracticable for many modern applications, even if some
form of discretization is applied to the state or action space.

To cope with this recent explosion in state and action space when learning directly from
pixels, different approaches have been proposed. Tang et al. [2016] utilize hash functions
to cleverly discretize the state space, which in turn allows them the use traditional count-
based exploration. More concretely, they define a hash function φ : S 7→ Z and use it to
include a count-based exploration bonus in the reward function:

r+(s) =
β√

n(φ(s))
, (3.1)

where β is a hyperparameter and n(·) is realized as a tabular counter that records the
number of times the hashed version of state s was encountered (see also Strehl and Littman
[2008]). The success of their method obviously hinges on the hash function φ, and the

12

3.3. Exploration in Deep Reinforcement Learning 13

authors investigate multiple candidates in their work. Bellemare et al. [2016] connect such
count-based exploration and intrinsic motivation exploration. To do so, they propose the
concept of a pseudo-count, which connects information-gain-as-learning-progress (some
form of intrinsic motivation) and count-based exploration. More concretely, they use a
density model, which, speaking in slightly simplifying terms, can be thought of as the
conditional probability of encountering some state s after having observed the sequence
of states s1, . . . , st. The pseudo-count is then derived from this density model and used
as an exploration bonus similarly to what was discussed before. This work was further
extended by Ostrovski et al. [2017], who address some remaining open questions and use
PixelCNN [van den Oord et al., 2016] as the density model of choice.

A different approach to exploration learns a dynamics model of the environment. If such
a model exists, the error in such a model can again be used as a bonus in the reward func-
tion, i.e. the agent is incentivized to visit states that it cannot currently model accurately.
Stadie et al. [2015] learn such a dynamics model using a deep neural network and assign
exploration bonuses based on the squared prediction error of their learned model, which
hinges on the assumption that the model produces accurate predictions for frequently vis-
ited state-action tuples and inaccurate ones otherwise. Houthooft et al. [2016] propose an
exploration method that is based on the same idea but instead incentivize the agent to
maximize the information gain about its beliefs of learned environment dynamics. Achiam
and Sastry [2017] define a measure of surprise, again using a learned model of the envi-
ronment’s dynamics. Finally, Pathak et al. [2017b] formalize the important insight that a
dynamics model should not capture everything that is observable by the agent. Instead,
the agent should only be concerned with modeling the parts of the environment that it can
actively influence or that have an influence on itself. To do so, the authors learn a model of
both the forward (i.e. given state st and action at, what is the next state st+1) and inverse
dynamics (i.e. given two subsequent states st and st+1, what action at was performed)
and cleverly connect them in an embedded representation of the state space. They show
that an embedding trained in this fashion only captures information that is relevant to the
agent. Like before, they use the error in prediction as measured in the embedded space to
incentivize exploration by including it as a bonus in the reward function.

A common problem with the aforementioned approaches is that they are typically not
universally applicable to all problems. They also often require additional models that need
to be trained in parallel with the policy, adding computation and complexity overhead.
As a result, we find that they are simply not used and simpler methods like ε-greedy and
additive Gaussian noise are still omnipresent in most reinforcement learning literature.
Another interesting observation is that these approaches usually augment the optimization
objective (i.e. the reward function) by including some form of exploration bonus. This, in
turn, means that they still rely on some form of undirected action space noise to discover
novel states that yield high exploration bonuses.

A very different approach to exploration was proposed by Gal and Ghahramani [2016].
Instead of augmenting the optimization objective like previous approaches, they utilize
dropout [Srivastava et al., 2014] and its connections to uncertainty estimation to drive
exploration. More concretely, they train the Q-network of the DQN algorithm [Mnih
et al., 2015] using dropout. When generating rollout data, they simply keep dropout
enabled and use Thompson sampling [Thompson, 1933] to explore. In effect, this means
that the agent samples a wide variety of actions if it has high uncertainty and converges
towards just one action as the uncertainty decreases. Osband et al. [2016] propose a
similar idea, Bootstrapped DQN, which has ties to the previously described uncertainty-
based exploration. They use multiple Q-networks that are trained on different subsets of
the observed experience data. When exploring, they pick one specific network for an entire
episode and follow its predictions, thus achieving consistent exploration within episodes

13

14 3. Related Work

but different behavior across episodes. Since Bootstrapped DQN is highly relevant for this
work, we include an in-depth discussion of it in Section 2.3.2.

3.4 Parameter Perturbations

The idea of perturbing parameters of a neural network is related to Evolutionary Strate-
gies (ES, Rechenberg and Eigen [1973], Schwefel [1977]) and especially Neural Evolutionary
Strategies (NES, Sun et al. [2009a,b], Glasmachers et al. [2010a,b], Schaul et al. [2011],
Wierstra et al. [2014]). In such approaches, noise in the parameters is typically used as
a derivative-free approximation of the gradient. Until recently, it was believed that such
methods are only applicable if the number of parameters is small and thus seemed in-
tractable for deep neural network-based policies. However, Salimans et al. [2017] showed
that this assumption actually turned out to be incorrect and that policies using deep neu-
ral networks could indeed be learned in such a fashion. They further noted that parameter
perturbations seemed to lead to improved exploration behavior. Unfortunately, their pro-
posed approach is vastly more sample-inefficient than the already quite sample inefficient
state-of-the-art deep reinforcement learning algorithms. Still, their work is closely related
to this thesis since we investigate parameter space noise not for the sake of approximating
gradients but instead for its exploration properties.

In the context of policy gradient reinforcement learning, the idea of parameter pertur-
bations has previously been explored by Rückstieß et al. [2008]. The authors show that
perturbations often lead to improved exploration behavior if combined with the REIN-
FORCE [Williams, 1992] and Natural Actor-Critic [Peters and Schaal, 2008] algorithms.
However, the discussion of parameter noise is strictly limited to the on-policy policy gra-
dient case and is only applied to extremely shallow policies with very small state spaces.
This work was further extended by Kober and Peters [2008] and Sehnke et al. [2010].

Concurrently to the work on this thesis, Fortunato et al. [2017] have proposed an ap-
proach for exploration, which uses parameter noise and is conceptually similar to what we
propose. In contrast to our approach, they directly learn the magnitude of the noise for
each parameter. We believe that this may be problematic since it increases the number
of parameters significantly. Additionally, by learning the scale of the parameter there is
a real risk that the noise is simply disabled very quickly since, from the perspective of
the agent, this noise hinds the agent at executing its optimal strategy. This is a common
problem and is typically addressed by introducing some from of entropy bonus in the re-
ward function [Mnih et al., 2016]. Unfortunately, this potential problem is not discussed in
their work. They also do not include an analyses that specifically tests for the exploration
properties of their algorithm. It is as such unclear how much their approach improves the
actual exploration capabilities of the evaluated algorithms. Furthermore, their discussion
is strictly limited to Atari and does not explore the effect of parameter noise on tasks with
continuous action spaces.

14

4. Parameter Space Noise for Exploration

The exploration vs. exploitation dilemma is a long standing issue in reinforcement learning.
Since the agent has no knowledge about its environment initially, it has to explore. Once
the agent finds states of high reward, it should learn to exploit behaviors that lead towards
these high rewards. However, it still remains important to explore since there may still be
strategies that are more optimal that have not yet been discovered.

While a variety of sophisticated exploration mechanisms exist (as discussed in Chapter 3),
in practice most reinforcement learning agents still rely on simple action space noise to
realize exploration due to its conceptual simplicity as well as trivial implementation. In
this thesis, we therefore propose a similarly simple yet more powerful exploration schema
that we show is capable of exploration in settings where traditional action space noise fails.
We call this exploration method parameter space noise.

During the work on this thesis, some parts have already been published by this author in
heavily condensed form as a conference paper pre-print [Plappert et al., 2017].

4.1 Background and Formulation

Before describing parameter space noise, let us review typical action space noise. In the
discrete case, ε-greedy exploration is typically used, which is defined as follows:

π̂(ai | s) =

{
1− ε+ ε

|A| if ai = π(s),
ε
|A| otherwise.

(4.1)

In general, we denote by π̂ the behavioral policy, i.e. the policy that is used to generate
rollouts during training and includes exploration. In other words, the optimal action
according to π is selected with probability 1− ε, and a random action is uniformly selected
with probability ε.

A slight variation of this formulation is Boltzmann or softmax exploration, which is defined
as follows:

π̂(ai | s) =
expQ(s, ai)∑
j expQ(s, aj)

, (4.2)

where Q(·, ·) is the action-value function. In contrast to ε-greedy exploration, actions are
now selected with probability proportional to their values.

15

16 4. Parameter Space Noise for Exploration

For the continuous case, noise is typically introduced in additive manner:

π̂(a | s) = πθ(a | s) +N (0, σ2I). (4.3)

Instead of additive Gaussian noise, other noise processes are sometimes used, e.g. the
Ornstein–Uhlenbeck process [Lillicrap et al., 2015] to obtain noise that is temporarily
correlated; however, the additive formulation remains the same.

While these approaches work, they all suffer from inconsistent exploration. To see why,
consider a fixed state s in a trajectory. Whenever this fixed state s occurs, the actual
action that the policy selects will be vastly different, due to the fact that the noise is not
conditioned on the current state. This is especially apparent in Equation (4.3), where
N (0, σ2I) clearly has no dependence on s whatsoever. If the noise process is temporarily
correlated, this problem becomes even more apparent. This thesis argues that this incon-
sistency in exploration behavior is problematic since it can cause oscillation. However, one
cannot simply use a deterministic policy that always outputs the same action given the
same state since the agent would then not explore at all.

The central idea of parameter space noise is to move the noise process from the actions to
the parameters of a policy πθ, where θ is the parameter vector.1 Instead of introducing
noise in the actions, parameter space noise perturbs the parameters:

θ̃ = θ +N (0, σ2I). (4.4)

We sometimes denote this perturbed version of the policy as π̃ := π
θ̃

and use it directly
as the behavior policy π̂(a | s) = π̃(a | s). Notice that the produced action is now fully
conditioned on the state s through the perturbed behavior policy.

If this perturbation is not performed at every step, it should be clear that parameter
space noise does indeed explore consistently, that is given a fixed state s, the produced
action will be the same.2 For example, if the parameters are perturbed at the beginning of
each episode, we achieve consistent exploration within that episode but still exhibit vastly
different behavior (due to the re-perturbation at the beginning) across episodes. Similar
observations have been pointed out by Rückstieß et al. [2008] and Osband et al. [2016].

Figure 4.1 summarizes the difference between traditional action space noise exploration
and our newly proposed parameter space noise exploration.

While the idea of parameter space noise is very simple (compare Equation (4.4)), applying
it to deep neural networks is not straightforward for the following two reasons.

• Different layers within the policy network may exhibit very different sensitivity to
perturbations.

• In contrast to action space noise, the effect of a perturbation in parameter space
cannot intuitively be understood and it is thus hard to reason about it. In particular,
selecting an appropriate scale σ is hard and may even have to vary with time.

Section 4.2 addresses the first problem and Section 4.3 the second one.

1In this work, all policies are always represented by (deep) neural networks, but this should only be
considered an implementation detail since the approach can be generalized to all functions that are
somehow parameterized.

2This is true for the deterministic case. For the probabilistic case, the distribution will be the same and
is fully conditioned on the current state.

16

4.2. Perturbing Deep Neural Networks 17

State st

+Noise

Action at

(a) Action space noise

State st

+ + +

+ + +

+

Noise

Action at

(b) Parameter space noise

Figure 4.1: Comparison between action space noise (left) and parameter space noise (right).
Depicted in red are the parts that are subject to noise. The action is produced by a param-
eterized policy, in this case a neural network.

4.2 Perturbing Deep Neural Networks

It is not immediately obvious that deep neural networks, with potentially millions of
parameters and complicated non-linear interactions, can be perturbed in meaningful ways
by applying spherical Gaussian noise. A similar problem has recently been addressed
by Salimans et al. [2017], who also perturb the weights of a deep neural network in order to
approximate the gradient for evolution strategies-based optimization (i.e. a derivative-free
approach). They utilize (virtual) batch normalization [Ioffe and Szegedy, 2015, Salimans
et al., 2016] to re-parameterize the network such that different layers within the network
have similar sensitivities to perturbations.

In this work, we follow a similar approach but replace batch normalization with the con-
ceptually much simpler layer normalization [Ba et al., 2016]. More concretely, we apply
layer normalization to each fully-connected layer:

h = f
[g
σ
� (a− µ) + b

]
, (4.5)

where f [·] denotes the non-linearity (e.g. a ReLU), which is applied element-wise, �
denotes the Hadamard product, and a = Wx is the projection of the input x using the
weights W of the fully-connected layer. g and b are the gain and bias and are learnable
parameters that we do not perturb. σ and µ are statistics that are based on the activations
a (a vector of dimension H) before applying the non-linearity:

µ =
1

H

H∑
i=1

ai σ =

√√√√ 1

H

H∑
i=1

(ai − µ)2, (4.6)

i.e. the empirical mean and standard deviation of all activations within that layer.

In contrast to (virtual) batch normalization, layer normalization has the advantage of
being independent of the current batch, since statistics are computed not across batches

17

18 4. Parameter Space Noise for Exploration

but within layers. This makes it especially attractive for applications in reinforcement
learning where the distribution of the samples is expected to shift as more and more of
the environment is discovered.3

Usually, normalization schemes like batch normalization and layer normalization are used
to stabilize training since the output of a layer has approximately zero mean and unit
variance. While this is of course useful, the role of normalization has a second, more
important angle in the context of perturbation. Assume that we perturb the weights of a
layer, i.e. W̃ = W+N (0, σ2I).4 Since the statistics are now computed based on ã = W̃x,
we can guarantee that arbitrary perturbations still result in an output of that layer that
has approximately zero mean and unit variance. This is important to ensure that upstream
(i.e. close to the input of the network) perturbations do not cause problems in downstream
layers. Just like Salimans et al. [2017], we find that such a re-parameterization is crucial
for our method to work since it allows use to use the same perturbation scale across all
layers.

4.3 Adaptive Scaling

While Section 4.2 was concerned with allowing us to have spherical Gaussian noise that
is applied equally to all layers, this section is concerned with determining an appropriate
value for the scalar σ2. This problem is actually quite non-trivial since it is hard to
intuitively understand the parameter. Consider additive, spherical Gaussian noise in the
action space. In this case, we can understand the effect that such a perturbation has quite
easily since we typically understand the action space of an environment. The same is true
for the ε parameter of ε-greedy exploration. On the other hand, a deep neural network
routinely has hundreds of thousands or millions of parameters and we cannot possibly
hope to understand what effects a perturbation with Gaussian noise of, say, N (0, 0.02 · I)
causes. Even worse, the sensitivity to perturbations is likely going to change as we train
the network since we move away from a random initialization around zero towards a quite
complicated and non-linear mapping from states to (hopefully) optimal actions.

Our proposed solution to this problem is to move the problem from the parameter space
to the action space. This trick allows us to measure the effect of a parameter perturbation
in a space that we typically understand. Conversely, since we now understand the effect of
the perturbation, we can close the loop and adapt the scale of the parameter perturbation
accordingly.

This idea can be formalized as follows:

σk+1 =

{
ασk if d (π(a | s), π̃(a | s)) ≤ δ,
1
ασk otherwise.

(4.7)

Here, d(·, ·) defines some distance measure between the perturbed policy π̃ and the non-
perturbed policy π, δ ∈ R>0 is a positive threshold value, and α ∈ R>0 is a positive
parameters that is used to adapt the current value σk.

5 In other words, we increase the
scale of parameter perturbations if the effect of the current scale as measured in action
space is below a desired threshold and decrease it otherwise. For example, if α = 1.01,

3Notice that this observation is true even if the the distribution of inputs (i.e. the states) is fixed. However,
from the perspective of the agent, it constantly changes as it explores and discovers previously unseen
states.

4This slight abuse of notation should be read as flattening W into a vector first, adding Gaussian noise
to each element, and then re-shaping the vector into a matrix again.

5Instead of this very simple linear scaling, more complicated adaption mechanisms could of course be
used instead. However, we leave this part to future work.

18

4.3. Adaptive Scaling 19

State s

+ + +

+ + +

+

Noise

-

Distance d(π, π̃)

a ã

Figure 4.2: Distance estimation between unperturbed policy π (left) and perturbed policy π̃
(right), which produce a and ã, respectively, using the same input s. The distance d(π, π̃)
is then computed using these actions.

the scale is increased by 1% whenever the desired threshold has not been achieved and is
decreased by 1% otherwise. Also note that this is an instance of the Levenberg-Marquardt
heuristic [Ranganathan, 2004].

In practice, the distance between π̃ and π cannot be computed. Instead, we estimate the
expected distance using a randomly sampled mini-batch {s(1), . . . , s(M)} of states:

Es [d(π̃, π)] ≈ 1

M

M∑
i=1

d
(
π
(
a(i) | s(i)

)
, π̃
(
a(i) | s(i)

))
. (4.8)

This is clearly tractable and computationally cheap since it requires only two forward
passes for each sample. Figure 4.2 illustrates the distance computation d(π, π̃) graphically.
The entire adaptive scaling approach is also summarized in Algorithm 5.

However, there is one last missing piece: the distance measure d(·, ·). In principle, there is
no single choice for d(·, ·) and it depends on the algorithm at hand as well as the desired
properties that one wishes to achieve with it. The proposed adaption approach should
thus be considered a framework in which the distance function is a concrete design choice.
In the following two subsections, we describe a distance measure for DQN and DDPG,
respectively, thus covering both discrete and continuous action spaces with deterministic
policies. Furthermore, Plappert et al. [2017] describe a distance measure for TRPO [Schul-
man et al., 2015b], which uses the Kullback-Leibler divergence and is thus an instance of
the probabilistic case, which we do not re-iterate here in detail.

4.3.1 A Distance Measure for DQN

For DQN, the policy is defined implicitly by theQ-function. Unfortunately, this means that
a näıve distance measure between Q and Q̃ has pitfalls. To see why, consider a policy where
the perturbation is a constant offset to the bias of the final layer. In this case, the Q-values
for the perturbed policy can be expressed as Q̃(s, ai) = Q(s, ai) + (̃bi − bi) = Q(s, ai) + c,
where b denotes the bias of the unperturbedQ-function and b̃ = b+c denotes the perturbed

19

20 4. Parameter Space Noise for Exploration

Algorithm 5 Parameter Space Noise Exploration with Adaptive Scaling

Given:

• an RL algorithm A, . e.g. DQN or DDPG

• an initial parameter space noise scale σ0 ∈ R>0,

• a distance measure d(·, ·),
• an adaption scalar and threshold α, δ ∈ R>0,

• intervals for training and adaptive scaling Ttrain, Tadapt ∈ R>0

Initialize A and in particular π = πθ
Initialize π̃ = π

θ̃
for exploration

Initialize π̄ = πθ̄ for noise adaption
for episode = 0, . . . ,M − 1 do

Perturb θ̃ ← θ +N (0, σ2
kI) and obtain π̃ = π

θ̃
for t = 0, . . . , T − 1 do

Sample an action at using the perturbed policy π̃
Execute action at and observe a new state st+1

if t mod Ttrain = 0 then
Execute training step of A

if t mod Tadapt = 0 then
Perturb θ̄ ← θ +N (0, σ2

kI) and obtain π̄ = πθ̄
Estimate dk ← Es [d (π(a | s), π̄(a | s))] . see Section 4.3.1 and Section 4.3.2

Adapt σk+1 ←

{
ασk if dk ≤ δ,
1
ασk otherwise

k ← k + 1

bias. Thus, if we would use a natural but näıve distance measure like the Euclidean norm
‖Q− Q̃‖, the distance between Q and Q̃ would clearly be non-zero.6 However, since the
deterministic policy is defined as π(s) := argmaxaQ(s, a), both π and π̃ are exactly the
same (since the argmax operation is invariant to the constant offset). Thus a distance
measure between π and π̃ should be zero, which is not the case for ‖Q− Q̃‖.

Our proposed distance measure is thus based on the probabilistic Boltzmann policy (com-
pare Equation (4.2)) for both π and its perturbed version π̃. Since both are probability
distributions, we can measure the distance using the the Kullback-Leibler (KL) diver-
gence:7

d(π, π̃) := DKL(π ‖ π̃) =

|A|∑
i=1

π(ai | s) log
π(ai | s)
π̃(ai | s)

. (4.9)

We note that this formulation is only used to define a well-behaved distance measure, and
the deterministic policy is still used for rollouts.

There are two advantages to this formulation. First, the distance measure is now invari-
ant to constant offsets to the Q-function as described previously due to the normalization
term of the Boltzmann distribution. Second, we can relate this distance measure to the
commonly used ε-greedy action space noise since both are probability distributions. This
is convenient since we avoid the need for another hyperparameter and can instead simply
scale the parameter space noise such that the effect in action space as measured by the

6In fact it would be ‖Q− Q̃‖ = ‖[c, . . . , c]T ‖ =
√∑|A|

i=1 c
2 =

√
|A|c2 =

√
|A|c and thus greater than zero

if c > 0.
7Strictly speaking, the KL divergence is not a distance measure since DKL(π ‖ π̃) 6= DKL(π̃ ‖ π).

20

4.3. Adaptive Scaling 21

KL divergence is similar to that of ε-greedy exploration.8 More concretely, the KL diver-
gence between the deterministic policy π and π̂, where π̂ denotes ε-greedy exploration (see
Equation (4.1)), is defined as follows:

DKL(π ‖ π̂) =

|A|∑
i=1

π(ai | s) log
π(ai | s)
π̂(ai | s)

(4.10)

= − log (1− ε+
ε

|A|
). (4.11)

Thus, by setting δ := − log (1− ε+ ε
|A|) and using the KL divergence as defined in Equa-

tion (4.9) in our adaptive scaling approach, we achieve parameter space noise that is
comparable in magnitude to ε-greedy action space noise.

4.3.2 A Distance Measure for DDPG

For DDPG, we can measure the effect of parameter space noise in action space noise
directly since DDPG defines an explicit policy network π. More concretely, we use the
following distance measure:

d(π, π̃) =

√√√√ 1

|A|

|A|∑
i=1

Es
[
(π(s)i − π̃(s)i)

2
]
, (4.12)

where Es[·] is estimated using a mini-batch of states from the replay buffer, |A| denotes
the number of continuous actions, and π(s)i denotes the i-th action selected by the deter-
ministic policy π. In other words, we estimate the standard deviation between perturbed
and non-perturbed policy.

The interpretation as the standard deviation is again convenient since action space noise
in the continuous case is usually realized as additive Gaussian noise (see Equation (4.3)).
This type of noise is quantified by its scale, the standard deviation σ. Similar to the
DQN case, we can thus relate parameter space noise and action space noise through this
measure. Thus, by setting δ := σ and using the distance measure from Equation (4.12),
we can ensure that the magnitude of the perturbation induced by parameter space noise
is comparable to additive Gaussian action space noise.

8Although the magnitude of noise in action space is similar, the structure and thus behavior of the
perturbed policy is still significantly different since the behavior is now fully conditioned on the state.

21

5. Experiments

In this chapter, we evaluate parameter space noise in a large variety of settings. We
start by considering a simple toy experiment (Section 5.1) that specifically tests for the
exploration capabilities of a reinforcement learning algorithm. In Section 5.2, we evaluate
the performance of DQN with parameter space noise on a set of 21 challenging Atari games
with discrete action spaces. We then move to domains that require continuous control in
Section 5.3. In this section, we evaluate the performance of parameter space noise on a
set of 7 continuous control problems that are part of OpenAI Gym Brockman et al. [2016]
and are considered a standard benchmark. To specifically test for exploration, we also
consider modified environments that exhibit a sparse reward structure. We conclude the
experiments chapter by testing the capabilities of parameter space noise on a set of four
real-world robotics problems in Section 5.4. In this section, we also compare parameter
space noise against Hindsight Experience Replay (HER, Andrychowicz et al. [2017]) and
investigate if parameter space noise and HER can be combined to achieve start-of-the-art
exploration on these challenging robotics tasks.

5.1 A First Toy Problem

To explore the properties of parameter space noise, we start our experimental evaluation
using a well-known toy problem. The environment at hand consists of N states, where
state sn is connected to state sn−1 to its left and state sn+1 to its right, thus building
a chain of length N , with N > 3. The leftmost state s1 and rightmost state sN are
connected to itself, respectively. In each state, the agent can select between two discrete
actions: left and right. State s1 yields a reward of r(s1) = 0.001 and state sN a reward of
r(sN) = 1. The agent always starts in state s2 and can perform N + 9 interactions with
the environment before it resets. Figure 5.1 depicts this environment.

s1r = 0.001 s2 s3 . . . sN−1 sN r = 1

Figure 5.1: Simple and scalable environment to test for exploratory behavior [Osband et al.,
2016]. State s2 is the initial state and states s1 and sN yield the indicated rewards. Arrows
represent possible actions (“left” and “right”).

23

24 5. Experiments

The optimal strategy is to always select the “right” action since the high reward in state sN
yields a higher return.1 However, finding this reward becomes increasingly more difficult
as the length of the chain increases since, from the perspective of the agent, going to the
right yields zero rewards until it eventually finds state sN . In contrast, it is extremely likely
that it will find the reward of state s1 immediately since it requires only a single “left”
action, which can easily lead to converging onto a sub-optimal strategy. This environment
thus specifically tests for exploration, where the agent has to select seemingly sub-optimal
actions for many steps to eventually discover the high reward state sN .

5.1.1 Experimental Setup

We follow the state encoding proposed by Osband et al. [2016] and use φ(sn) = (1{x ≤ sn})
as the observation, where 1 denotes the indicator function. DQN is used with a very simple
network to approximate the Q-value function that consists of 2 hidden layers with 16 ReLU
units. Layer normalization [Ba et al., 2016] is used for all hidden layers before applying
the non-linearity. Each agent is trained and evaluated for up to 2 000 episodes: After each
training episode, the current performance is evaluated by disabling any exploration noise
and performing a single evaluation rollout.

We compare our proposed adaptive parameter space noise DQN against Bootstrapped
DQN [Osband et al., 2016] with K = 20 heads and Bernoulli masking with p = 0.5 as
well as ε-greedy DQN where we anneal ε linearly from 1 to 0.1 over the first 100 episodes.
For parameter space noise exploration, we use the previously describe distance measure
(see Section 4.3.1) and scale σ such that δ ≈ 0.05. For all evaluated DQN variants, we
set γ = 0.999, use a replay buffer of size 100 000 and update the target network every
100 timesteps. We use the Adam optimizer [Kingma and Ba, 2014] with a learning rate
of 10−3 and a batch size of 32. Training starts after the first five episodes to ensure that
the replay buffer holds a sufficient amount of transitions. As mentioned before, we display
exploration during the evaluation rollouts, which is straightforward for parameter space
noise and ε-greedy exploration. For Bootstrapped DQN, we perform majority voting over
all heads during evaluation.

To better understand how each exploration mechanism behaves, we vary the length of the
chain N . We also repeat this experiment using three different random seeds and report the
median number of episodes after which the environment is considered solved. We consider
the problem solved if a policy achieves the optimal return in 100 subsequent evaluation
rollouts.2 If an agent fails to solve the environment for a a specific value of N after
2 000 episodes, we considered it unsolved. We evaluate the performance for chain lengths
N = 4, 5, . . . , 100.

5.1.2 Results

Figure 5.2 shows the results for DQN with parameter space noise exploration (ours), Boot-
strapped DQN and DQN with ε-greedy action space exploration. Depicted are the number
of episodes before the problem is solved for varying chain lengths. ε-greedy exploration
fails even for relatively short chain lengths and does never discover the optimal strategy for
N > 20. This is because ε-greedy explores inconsistently, that is given the same state sn,
it will likely select different actions. Bootstrapped DQN performs much better and finds

1This holds for moderately large values of N until eventually the chain becomes so long that the return
to the left becomes larger due to the fact that we can stay in this low reward state for many steps.
However, we only consider chains up to length 100, so this is not a concern in our experiments.

2This means that even if the policy would immediately be optimal after the first episode, we would run
the algorithm for at least 99 more episodes. We can therefore not expect to do better than solving the
environment after 100 episodes under this evaluation schema.

24

5.2. Arcade Learning Environment Experiments 25

20 40 60 80 100
chain length

0

500

1000

1500

2000

nu
m

be
r o

f e
pi

so
de

s

Parameter space noise DQN

20 40 60 80 100
chain length

Bootstrapped DQN

20 40 60 80 100
chain length

-greedy DQN

Figure 5.2: Median number of episodes before considered solved for DQN with different
exploration strategies. Green indicates that the problem was solved whereas blue indicates
that no solution was found within the 2 000 episodes limit. Less episodes before solved is
better.

solutions for almost all chain lengths. In contrast to ε-greedy exploration, Bootstrapped
DQN commits to a single head for each episode, which means that it will consistently
explore within this episode. However, as the chain length increases, Bootstrapped DQN
also starts to struggle and the number of episodes it requires to solve the problem increases
significantly. Finally, our proposed parameter space noise exploration strategy consistently
finds the optimal strategy even for large N and clearly outperforms Bootstrapped DQN
while being conceptually simpler and less computationally expensive. Like Bootstrapped
DQN, we also explore consistently since we perturb the network only at the beginning of
each episode. However, our network does not have multiple heads that need to be trained,
which we believe is the main factor that makes parameter space noise learn the problem
more quickly.

5.2 Arcade Learning Environment Experiments

While Section 5.1 shows that parameter space noise exhibits exploration behavior that
is significantly different from typical action space noise exploration, the chain problem is
relatively simple due to its low state and action dimensionality as well as trivial optimal
policy. In this section, we therefore explore how parameter space noise behaves in much
more complicated environments if we combine it with state of the art reinforcement learning
algorithms like DQN.

5.2.1 Environment

The Arcade Learning Environment (ALE, Bellemare et al. [2013]) is an Atari 2600 sim-
ulator that is widely used for the evaluation of reinforcement learning algorithms. These
games offer a challenging set of problems since the agent has to learn directly from pixels,
making the state space extremely large. Furthermore, a great variety of games exist that
have vastly different game mechanics and often require non-trivial exploration. In all cases,
the action space is discrete and its dimension may vary from game to game. Figure 5.3
depicts some exemplary games.

Concretely, we use the following 21 ALE environments. This selection is based on the
taxonomy presented by Bellemare et al. [2016], and contains a mix of games with easy
exploration and hard exploration with both dense and sparse rewards.

• Alien (S ⊂ [0, 1]4×84×84, A = {1, . . . , 18})

• Amidar (S ⊂ [0, 1]4×84×84, A = {1, . . . , 10})

• BankHeist (S ⊂ [0, 1]4×84×84, A = {1, . . . , 18})

• BeamRider (S ⊂ [0, 1]4×84×84, A = {1, . . . , 9})

25

26 5. Experiments

(a) Alien (b) Amidar (c) Breakout (d) Enduro

(e) Freeway (f) Qbert (g) SpaceInvaders (h) Zaxxon

Figure 5.3: Eight exemplary Atari games simulated using ALE and OpenAI Gym. In all
cases, the agent learns directly from pixels.

• Breakout (S ⊂ [0, 1]4×84×84, A = {1, . . . , 4})

• Enduro (S ⊂ [0, 1]4×84×84, A = {1, . . . , 9})

• Freeway (S ⊂ [0, 1]4×84×84, A = {1, . . . , 3})

• Frostbite (S ⊂ [0, 1]4×84×84, A = {1, . . . , 18})

• Gravitar (S ⊂ [0, 1]4×84×84, A = {1, . . . , 18})

• MontezumaRevenge (S ⊂ [0, 1]4×84×84, A = {1, . . . , 18})

• Pitfall (S ⊂ [0, 1]4×84×84, A = {1, . . . , 18})

• Pong (S ⊂ [0, 1]4×84×84, A = {1, . . . , 6})

• PrivateEye (S ⊂ [0, 1]4×84×84, A = {1, . . . , 18})

• Qbert (S ⊂ [0, 1]4×84×84, A = {1, . . . , 6})

• Seaquest (S ⊂ [0, 1]4×84×84, A = {1, . . . , 18})

• Solaris (S ⊂ [0, 1]4×84×84, A = {1, . . . , 18})

• SpaceInvaders (S ⊂ [0, 1]4×84×84, A = {1, . . . , 6})

• Tutankham (S ⊂ [0, 1]4×84×84, A = {1, . . . , 8})

• Venture (S ⊂ [0, 1]4×84×84, A = {1, . . . , 18})

• WizardOfWor (S ⊂ [0, 1]4×84×84, A = {1, . . . , 10})

• Zaxxon (S ⊂ [0, 1]4×84×84, A = {1, . . . , 18})

We utilize OpenAI Gym [Brockman et al., 2016] to interface with the ALE simulator since
it provides a common and easy to use Python interface. OpenAI Gym is open-source
and publicly available.3 We further apply the preprocessing that DQN implementations
typically use. We down-scale each frame to 84 × 84 pixels to make the computation of
the convolutions less expensive. Furthermore, we convert all frames into grayscale and

3https://github.com/openai/gym

26

https://github.com/openai/gym

5.2. Arcade Learning Environment Experiments 27

concatenate 4 subsequent frames into a single observation. This is necessary since the
games are typically not fully observable from a single frame since, for example, the velocity
of an object could not be inferred. Finally, we normalize the pixel values to be in in [0, 1].
The observation is thus s ∈ [0, 1]4×84×84, where each frame is considered a channel of the
resulting “image”. We further clip rewards such that r ∈ [−1, 1]. This is common practice
and ensures that rewards are on comparable scales across different games. We also perform
up to 30 noop actions at the beginning of each game to effectively randomize the initial
state across different runs. During training, we further consider a state as terminal as
soon as the agent loses a single life. This effectively reduces the time horizon and thus
makes the estimation of Q a bit simpler. Lastly, we employ frame skip of length 4 that
repeats the current action 4 times before querying the policy for a new action. All of the
aforementioned changes to the environment are what Mnih et al. [2015] describe and we
follow their setup as close as possible to obtain comparable results. The preprocessing
code is available online.4

5.2.2 Experimental Setup

We use DQN for ALE and follow the experimental setup of Mnih et al. [2015] as closely
as possible. More concretely, we use a Q-network that consists of 3 convolutional layers
(32 filters of size 8 × 8 and stride 4, 64 filters of size 4 × 4 and stride 2, 64 filters of
size 3 × 3 and stride 1) followed by 1 hidden layer with 512 units followed by a linear
output layer with one unit for each action. ReLUs are used in each layer, while layer
normalization [Ba et al., 2016] is used in the fully connected part of the network. Layer
normalization is not used in the original paper but we require it since we wish to perturb
the Q-network. To allow for a fair comparison, we include it in cases since we have found
that it does not hurt performance for the baseline case. The target networks are updated
every 10 000 steps. The Q-network is trained using the Adam optimizer [Kingma and
Ba, 2014] with a learning rate of 10−4 and a batch size of 32. The replay buffer can hold
1 000 000 state transitions. For the ε-greedy baseline, we linearly anneal ε from 1 to 0.1 over
the first 1 000 000 steps. For parameter space noise, we adaptively scale the noise to have
a similar effect in action space (see Section 4.3.1 for details), effectively ensuring that the
maximum KL divergence between perturbed and non-perturbed π is softly enforced. This
also ensures a fair comparison between ε-greedy exploration and our proposed parameter
space exploration since the magnitude in resulting noise as measured in action space is
comparable. The policy is perturbed at the beginning of each episode and the standard
deviation is adapted as described in Section 4.3 every 50 steps. We only perturb the fully
connected part of the network. This is because the convolutional part of the network is
concerned with extracting features from the input images. For that reason, it would not
make sense to perturb this part since the decision making for choosing an action is done
in the fully connected part of the network. To avoid getting stuck (which can potentially
happen for a perturbed policy), we also use ε-greedy action selection with ε = 0.01. In all
cases, we perform 50 000 random actions to collect initial data for the replay buffer before
training starts. We set γ = 0.99 and clip gradients for the output layer of Q to be within
[−1, 1]. Table 5.1 summarizes all hyperparameters.

We further found that for parameter space noise, it is beneficial to include a second,
separate policy head in the standard DQN network architecture. More concretely, we
share the convolutional part between both heads, followed by the fully connected layers
for the Q estimation (as per usual) plus another head with the same architecture for the
policy. The final output layer of the policy head uses a softmax activation to produce a
probability distribution over actions (in contrast to the Q-head which produces a scalar
per action). We train the Q-head as per standard DQN practices. For the policy head, we

4https://github.com/openai/baselines/blob/master/baselines/common/atari_wrappers.py

27

https://github.com/openai/baselines/blob/master/baselines/common/atari_wrappers.py

28 5. Experiments

Table 5.1: Hyperparameters for DQN experiments.

Hyperparameter Value

Target network update interval 10 000
Optimizer Adam [Kingma and Ba, 2014]
Batch size 32
Learning rate 10−4

Replay buffer size 406

Warm-up steps 50 000
Training steps 106

Discount factor γ 0.99
Reward normalization r ∈ [−1, 1]
Gradient clipping Gradient in [−1, 1] for output layer
Network architecture Mnih et al. [2015]

ε-greedy annealing Linear over 106 steps
ε-greedy minimum value 0.1

Parameter noise adaption interval (Tadapt) 50
Parameter noise distance measure Section 4.3.1

simply freeze the convolutional layers and train the head to maximize the probability of the
best action as defined by the Q-head (i.e. with label y = argmaxaQ(s, a)) by minimizing
the cross entropy between the label and the prediction. In effect, this causes the policy
network head to simply track the behavior of the Q-network head, but we found that
perturbations to the policy head result in richer exploration behavior than perturbing Q
directly. During rollouts, we thus use this separate policy head (or its perturbed version).
To ensure that this architecture change does not meaningfully alter the behavior of ε-
greedy exploration, we include a version with separate policy network head but regular
ε-greedy exploration as a control in our experiments.

An open-source implementation of adaptive parameter space noise with DQN is available
online.5

5.2.3 Results

The learning curves for all aforementioned 21 ALE environments are depicted in Figure 5.4.
To better estimate the overall performance of each strategy, we run each experiment with
3 random seeds and present the median return (line) as well as the interquartile range
(shaded area) for each configuration. Also notice that we depict the performance of the
behavior policy, i.e. including noise, since we are especially interested in its behavior.

On Enduro, which requires a player to continuously press a button in order to accelerate
a racing car, parameter space noise finds this strategy significantly earlier than ε-greedy
exploration and thus achieves higher scores. The same holds true for Freeway, which
requires an agent to cross a street crowded with cars, which again requires some consistency
to successfully obtain high scores. However, parameter space noise also achieves higher
scores on games with dense rewards like Breakout during training. In Breakout, the agent
has to move a paddle at the bottom of the screen such that a ball is hit against a row of
bricks. We believe that action space noise causes the paddle to jitter, resulting the agent
to drop balls more easily compared to parameter space noise exploration. We also note
that there are some games like Montezuma’s Revenge that neither action space noise nor

5https://github.com/openai/baselines/tree/master/baselines/deepq

28

https://github.com/openai/baselines/tree/master/baselines/deepq

5.2. Arcade Learning Environment Experiments 29

parameter space noise are able to learn. These games are considered to be extremely hard
since an agent needs to complete a few high-level steps like collecting a key, finding the
relevant door, and finally opening it before receiving any reward. While we believe that
these games will require more sophisticated exploration methods, parameter space noise
will likely be useful to learn the low-level steps to achieve each of the high-level goals.

Overall, our results show that parameter space noise exploration typically achieves much
higher scores during training due to improved exploration over ε-greedy action space noise
exploration. We find that DQN with parameter space noise clearly outperforms ε-greedy
on 8 out of the 21 games used in our experiments. On the remaining games, parameter
space noise exhibits comparable performance, such that we can conclude that parameter
space noise either improves performance or, in the worst case, performs at least similarly
to action space noise.

Table 5.2: Performance comparison between Evolution Strategies (ES) as reported in Sal-
imans et al. [2017], DQN with ε-greedy, and DQN with parameter space noise (proposed
method). ES was trained on 1 000 M, while DQN was trained on only 40 M frames.

Game ES DQN with ε-greedy DQN with parameter noise

Alien 994.0 1535.0 2070.0
Amidar 112.0 281.0 403.5
BankHeist 225.0 510.0 805.0
BeamRider 744.0 8184.0 7884.0
Breakout 9.5 406.0 390.5
Enduro 95.0 1094 1672.5
Freeway 31.0 32.0 31.5
Frostbite 370.0 250.0 1310.0
Gravitar 805.0 300.0 250.0
MontezumaRevenge 0.0 0.0 0.0
Pitfall 0.0 -73.0 -100.0
Pong 21.0 21.0 20.0
PrivateEye 100.0 133.0 100.0
Qbert 147.5 7625.0 7525.0
Seaquest 1390.0 8335.0 8920.0
Solaris 2090.0 720.0 400.0
SpaceInvaders 678.5 1000.0 1205.0
Tutankham 130.3 109.5 181.0
Venture 760.0 0 0
WizardOfWor 3480.0 2350.0 1850.0
Zaxxon 6380.0 8100.0 8050.0

Since parameter space noise is related to evolution strategies due to the way it uses param-
eter perturbations to explore, we also include a comparison with the results of Salimans
et al. [2017] on ALE environments in Table 5.2. Notice that we here only compare the final
performance of the policy without exploration behavior, which explains some discrepancies
between Figure 5.4 and Table 5.2. For this experiment, we run the final policy obtained by
ε-greedy exploration and parameter space noise exploration for 10 subsequent episodes and
compute the mean performance. The same evaluation procedure was used by Salimans
et al. [2017] such that we can directly compare our results with theirs. However, our agent
was only trained on 40M frames, which is in stark contrast to the 1 000 M frames that were
required to train the ES agent proposed by Salimans et al. [2017], while still outperforming
it on the vast majority of the 21 included environments. This highlights that a feasible

29

30 5. Experiments

middle ground between ES and its superior exploration behavior as reported by Salimans
et al. [2017] and traditional and more sample efficient reinforcement learning with action
space noise exists.

On a final note, other proposed improvements to DQN like double DQN van Hasselt [2010],
prioritized experience replay Schaul et al. [2015b], and dueling networks Wang et al. [2016]
are orthogonal to our improvements and would therefore likely improve results further.
We leave the experimental validation of this theory to future work since it would require
significant additional computational resources.

30

5.2. Arcade Learning Environment Experiments 31

500

1000

1500

M
ed

ia
n

R
et

ur
n

Alien

0

100

200

300

400

Amidar

0

200

400

600

800
BankHeist

0

2500

5000

7500

10000

M
ed

ia
n

R
et

ur
n

BeamRider

0

100

200

300

Breakout

0

500

1000

1500

Enduro

0

10

20

30

M
ed

ia
n

R
et

ur
n

Freeway

250

500

750

1000
Frostbite

100

150

200

250

300
Gravitar

0.0

0.2

0.4

0.6

M
ed

ia
n

R
et

ur
n

MontezumaRevenge

600

400

200

0
Pitfall

20

10

0

10

20
Pong

0

500

1000

M
ed

ia
n

R
et

ur
n

PrivateEye

0

2000

4000

6000

Qbert

0

2500

5000

7500

10000
Seaquest

500

1000

1500

2000

2500

M
ed

ia
n

R
et

ur
n

Solaris

500

1000

SpaceInvaders

0

50

100

150

200
Tutankham

0 1 2 3 4
Step 1e7

0

10

20

30

M
ed

ia
n

R
et

ur
n

Venture

0 1 2 3 4
Step 1e7

0

1000

2000

WizardOfWor

0 1 2 3 4
Step 1e7

0

2000

4000

6000

8000

Zaxxon

parameter noise -greedy, separate policy head -greedy

Figure 5.4: Median DQN returns for 21 ALE environments for parameter space noise
exploration (in blue), ε-greedy exploration (in red), and ε-greedy exploration with separate
policy head as a control (in green) plotted over training steps. Returns are smoothed slightly
to remove noise.

31

32 5. Experiments

5.3 Continuous Control Experiments

Section 5.1 and Section 5.2 have shown promising results but so far we have only evaluated
parameter space noise on domains with discrete action spaces and with DQN as the deep
reinforcement learning algorithm of choice. In this section we thus extend our experimental
results to the continuous domain with DDPG, which is especially relevant for the field of
robotics.

5.3.1 Environments

We use two different but similar sets of environments in this section. We first describe
the standard benchmark for continuous control problems that is part of OpenAI Gym.
While these environments are standard benchmarks for deep reinforcement learning, they
all exhibit very dense rewards, which makes them not ideal for testing for exploration
behavior. For that reason, we also introduce similar problems that have been modified
such that the reward function is extremely sparse, often only yielding a single reward once
a goal has been achieved and zero otherwise.

5.3.1.1 OpenAI Gym Continuous Control

(a) HalfCheetah (b) Hopper (c) InvertedPendulum
(d) InvertedDoublePen-
dulum

(e) Reacher (f) Swimmer (g) Walker2d

Figure 5.5: Continuous control environments simulated using MuJoCo and OpenAI Gym.
The agent learns from the state of the physics simulation and pixel renderings are only
provided here for visualization purposes.

For the evaluation of parameter space noise with continuous action spaces, we use the set
of continuous control problems that are part of OpenAI Gym [Brockman et al., 2016].
These problems have become the de facto standard for benchmarking algorithms for con-
tinuous control and the corresponding code is available online.6 Under the hood, OpenAI
Gym uses the rigid body simulator MuJoCo [Todorov et al., 2012], which allows for fast
and numerically stable simulation. We depict all continuous control environments that
we use for our experiments in Figure 5.5, which range from manipulation to challenging
locomotion problems.

Concretely, we use the following 7 environments in all our continuous control experiments:

6https://github.com/openai/gym/blob/master/gym/envs/mujoco

32

https://github.com/openai/gym/blob/master/gym/envs/mujoco

5.3. Continuous Control Experiments 33

• HalfCheetah (S ⊂ R17, A ⊂ R6) The agent controls a 6 DoF model of a 2-
dimensional (hence the name) cheetah. The goal is to run forward as quickly as
possible. The reward contains the delta in distance covered as well as a small penalty
proportional to the magnitude of the action. The state contains the angular position
and velocities of the joints of the model.

• Hopper (S ⊂ R11, A ⊂ R3) The agent controls a 3 DoF model for single-legged
locomotion. The goal is to run move forward, which is usually achieved by hopping
(hence the name). The reward contains the delta in distance covered as well as a
small penalty proportional to the magnitude of the action. The state contains the
angular position and velocities of the joints of the model. If the hopper model falls
to the ground, the environment resets.

• InvertedDoublePendulum (S ⊂ R11, A ⊂ R) The agent controls a sledge that
has a pendulum mounted to it. The goal is to balance the pendulum by moving the
sledge left and right. Crucially, the agent cannot actuate the joint of the pendulum
directly. The agent receives a constant reward of 1 in each step. The state contains
the angular position and velocities of the joints of the model. If the pendulum falls
below a certain threshold, the environment resets.

• InvertedPendulum (S ⊂ R4, A ⊂ R) The agent controls a sledge that has a double
pendulum mounted to it. The goal is to balance the double pendulum by moving
the sledge left and right. Crucially, the agent cannot actuate any of the joints of the
double pendulum directly. The agent receives a constant reward of 1 in each step.
The state contains the angular position and velocities of the joints of the model. If
the double pendulum falls below a certain threshold, the environment resets.

• Reacher (S ⊂ R11, A ⊂ R2) The agent controls a 2 DoF model of a robotic arm.
The goal is to move the end effector towards a defined goal position. The agent
receives a penalty proportional to the distance between the position of its current
end effector and the goal position as well as a small penalty proportional to the
magnitude of the action. The state contains the angular position and velocities of
the current distance between end effector and goal position in Cartesian space.

• Swimmer (S ⊂ R8, A ⊂ R2) The agent controls a 2 DoF model of a worm-like
creature. The goal is to move forward as fast as quickly, usually by a swimming
motion. The reward contains the delta in distance covered as well as a small penalty
proportional to the magnitude of the action. The state contains the angular position
and velocities of the joints of the model.

• Walker2D (S ⊂ R17, A ⊂ R6) The agent control a 6 DoF model of a two-legged
creature without an upper body. The goal is to move forward as fast as quickly,
usually by a walking motion. The reward contains the delta in distance covered
as well as a small penalty proportional to the magnitude of the action. The state
contains the angular position and velocities of the joints of the model. If the walker
model falls to the ground, the environment resets.

A problem with the aforementioned problems is that observations can be on vastly different
scales (e.g. velocities are typically much larger than the corresponding positions of the
respective joints). To overcome this problem, we employ a simple normalization schema
that has also been popularized by Schulman et al. [2015b]. More concretely, we normalize
each state s before passing it into a neural network:

s̄ =
s− µ
σ

, (5.1)

where all operations are element wise and µ,σ have the same dimension as s. As should
be obvious, this ensures that each dimension of s has approximately zero variance and

33

34 5. Experiments

unit variance. Unfortunately, we have no information about µ and σ, which is why we
continuously re-estimate them.7 This re-estimation causes some non-stationarity but we
found that the change occurs slow enough that it does not really matter in practice. On
the other hand, if we do not employ this normalization schema, performance degrades
severely.

5.3.1.2 Continuous Control with Sparse Rewards

(a) SparseMountainCar (b) SparsePendulumSwingup
(c) SparseDoublePendulum-
Swingup

(d) SparseHalfCheetah (e) SparseSwimmerGather

Figure 5.6: Continuous control environments with sparse rewards. Renderings are from
OpenAI Gym and rllab [Duan et al., 2016].

While the dense continuous control problems described in the previous section are fre-
quently used as a benchmark, they have an extremely dense reward structure that yields
a reward in every step. Since we are especially interested in the exploration behavior of
our proposed method, we use continuous control problems with sparse rewards instead.
Houthooft et al. [2016] have observed similar problems when evaluating their exploration
method, and we use the same environments that they describe, which are based on rl-
lab [Duan et al., 2016].8

Concretely, we use the following 7 environments in all our continuous control experiments,
which are also depicted in Figure 5.6:

• SparseMountainCar (S ⊂ R2, A ⊂ R) The agent controls a mountain car with a
single DoF. The goal is to drive the car up the hill towards the flag. However, the car
is underpowered such that the agent needs to collect momentum first before being
able to escape the valley. The agent only receives a reward if it successfully reaches
the flag and zero otherwise.

• SparsePendulumSwingup (S ⊂ R4, A ⊂ R) The agent controls a single DoF pen-
dulum. The goal is to swing up the pendulum and then balance it. The agent only
receives a reward if the pendulum is moved above a certain threshold value and zero
otherwise.

• SparseDoublePendulumSwingup (S ⊂ R6, A ⊂ R) The agent controls a 2 DoF
pendulum. The goal is to swing up the double pendulum above a certain threshold.

7Collecting an estimate early on would be an alternative but the distribution may shift significantly as
training progresses.

8https://github.com/rll/rllab

34

https://github.com/rll/rllab

5.3. Continuous Control Experiments 35

However, the agent can only actuate the base joint of the double pendulum, further
increasing the difficulty.

• SparseHalfCheetah (S ⊂ R17, A ⊂ R6) The agent controls a half cheetah model
like described in the previous section. However, in contrast to the previous environ-
ment, the agent only receives a reward if the cheetah runs for multiple meters and
zero otherwise.

• SparseSwimmerGather (S ⊂ R33, A ⊂ R2) The agent controls a swimmer model
like described in the previous section. However, the goal is now to collect apples
(the blue spheres) and to avoid bombs (the red spheres). For all other states, the
agent receives a reward of zero. This is an extremely challenging environment since
it requires the swimmer to learn a locomotion skill and move towards desirable goals
with almost no reward signal.

For all tasks, we use a time horizon of T = 500 steps before resetting the environment.

We further normalize states as described in the previous section for the dense continuous
control case to avoid the aforementioned difference in scale across dimensions.

5.3.2 Experimental Setup

For all our DDPG, we use a network architecture that is similar to the one described
by Lillicrap et al. [2015]. However, we use a slightly smaller network with 2 hidden layers
with 64 units each followed by a ReLu non-linearity for both the actor and the critic
network. Similarly to the architecture described by Lillicrap et al. [2015], we do not
include the actions until the second layer in the critic network to force the network to
learn a representations from states alone first. Since we wish to perturb the network, we
include layer normalization [Ba et al., 2016] between all layers (compare Section 4.2). In
order to ensure that actions are bound, we use a tanh activation in the last layer of the actor
network, thus ensuring that actions are in [−1, 1]. If an environment requires actions within
different bounds, we rescale them appropriately before execution in the environment. We
also include layer normalization in all networks and for all exploration methods since we
found that it generally improves performance of all methods and significantly stabilizes
training. For the target networks, we use soft updates with τ = 0.001. We use the Adam
optimizer [Kingma and Ba, 2014] with batch sizes of 128 to train both the actor and the
critic network. However, for the actor network we use a learning rate of 10−4 whereas the
critic is updated using a learning rate of 10−3. Furthermore, we include L2 regularization
with a coefficient of 10−2 when training the critic network to avoid overfitting. In all
experiments, we use a standard replay buffer that holds up to 100 000 transitions. We use
γ = 0.99 to discount returns and apply the normalization of states as previously described.

We consider four different exploration methods:

• No exploration In this configuration, we disable all exploration and directly execute
the actions that our policy predicts. This configuration functions as a control since
an environment that requires no exploration is not an appropriate benchmark for
our proposed exploration method.

• Exploration with uncorrelated additive Gaussian noise In this configuration,
we include uncorrelated additive Gaussian noise before executing an action: at =
π(s) + N (0, σ2I). For environments with dense rewards we use σ = 0.2 and for
environments with sparse rewards we use σ = 0.6.

• Exploration with correlated additive Gaussian noise In this configuration, we
include correlated additive Gaussian noise using the Ornstein-Uhlenbeck process [Uh-
lenbeck and Ornstein, 1930] before executing an action: at = π(s) + OU(σ, θ). For

35

36 5. Experiments

Table 5.3: Hyperparameters for DDPG experiments.

Hyperparameter Value

Soft target network update parameter τ τ = 10−3

Optimizer Adam [Kingma and Ba, 2014]
Batch size 128
Actor learning rate 10−4

Critic learning rate 10−3

Critic L2 regularization 10−2

Training steps 106

Replay buffer size 105

Discount factor γ 0.99
Network architecture Lillicrap et al. [2015] with 64 units each

Uncorrelated noise σ σ = 0.2 or σ = 0.6

Correlated noise σ σ = 0.2 or σ = 0.6
Correlated noise θ θ = 0.15

Parameter noise adaption interval (Tadapt) 50
Parameter noise distance measure Section 4.3.2

environments with dense rewards we use σ = 0.2 and for environments with sparse
rewards we use σ = 0.6. We keep θ = 0.15 fixed for both cases.

• Exploration with parameter space noise In this configuration, we use param-
eter space noise as described in Chapter 4: at = π̃(s). In order to ensure a fair
comparison, we use adaptive parameter space noise as described in Section 4.3.2
such that we achieve a perturbation as measured in action space with σ = 0.2 and
σ = 0.6 for the dense and sparse environments, respectively.

All hyperparameters are conveniently summarized in Table 5.3. An open-source imple-
mentation of adaptive parameter space noise with DDPG is available online.9

5.3.3 Results

5.3.3.1 OpenAI Gym Continuous Control

We start by evaluating the performance on the standard MuJoCo continuous control tasks
as implemented by OpenAI Gym. Similar to the DQN case, we plot the achieved return
over training steps with exploration noise enabled since we are, in particular, interested
in this behavior. Since we aggregate over multiple runs for each configuration to avoid
fluctuations due to the random seed, we depict the median (line) and the interquartile range
(shaded area) for each of the four exploration configurations: adaptive parameter noise,
correlated action space noise (Ornstein-Uhlenbeck process), uncorrelated action space noise
(Gaussian), and no exploration altogether.

On HalfCheetah (Figure 5.7), parameter space noise achieves significantly higher returns
than all other configurations. By visualizing the policy during training, we find that this
is due to the fact that other exploration methods prematurely converge to sub-optimal
locomotion strategies. For example, policies that were trained without parameter space
noise often learn to flip the cheetah on its back and then use rapid movements of the
legs to “wiggle” forward. Another sub-optimal strategy that we see is one where the agent

9https://github.com/openai/baselines/tree/master/baselines/ddpg

36

https://github.com/openai/baselines/tree/master/baselines/ddpg

5.3. Continuous Control Experiments 37

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

1000

2000

3000

4000

5000

M
ed

ia
n

R
et

ur
n

HalfCheetah-v1

parameter space noise
correlated action noise
uncorrelated action noise
no exploration

Figure 5.7: Median DDPG returns for HalfCheetah with four different exploration methods.
Returns are smoothed slightly to remove noise.

balances the cheetah model on a single leg and then hops forward. Importantly, parameter
space noise also occasionally exhibits this behavior during our experiments but, in contrast
to all other exploration strategies, will escape these sub-optimal strategies and converges
to a “normal” locomotion strategy. This is also apparent in the plot for HalfCheetah: All
other exploration methods converge to a strategy that achieves a return around 2, 000,
whereas parameter space noise finds much better strategies.

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

1000

1200

1400

M
ed

ia
n

R
et

ur
n

Hopper-v1

parameter space noise
correlated action noise
uncorrelated action noise
no exploration

Figure 5.8: Median DDPG returns for Hopper with four different exploration methods.
Returns are smoothed slightly to remove noise.

In the case of Hopper (Figure 5.8), parameter space noise seems to perform reasonably well
and does seem to find good strategies. However, we find that performance is quite noisy
and performance seems to occasionally collapse. We believe that this is due to the inherent
instability of training DDPG (also experienced by Duan et al. [2016]). Still, parameter

37

38 5. Experiments

space noise seems to outperform correlated and uncorrelated action space noise on this
environment.

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

1000

M
ed

ia
n

R
et

ur
n

InvertedPendulum-v1

parameter space noise
correlated action noise
uncorrelated action noise
no exploration

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

2000

4000

6000

8000

M
ed

ia
n

R
et

ur
n

InvertedDoublePendulum-v1

parameter space noise
correlated action noise
uncorrelated action noise
no exploration

(b)

Figure 5.9: Median DDPG returns for InvertedPendulum (left) and InvertedDoublePen-
dulum (right) with four different exploration methods. Returns are smoothed slightly to
remove noise.

We jointly summarize the results for InvertedPendulum (Figure 5.9a) and InvertedDou-
blePendulum (Figure 5.9b) since they are quite similar: We find that no exploration noise
seems to perform best on these environments. This makes sense since we here opted to
depict the performance of the agent during training since we are especially interested in
its exploration behavior. However, since this task does not require significant exploration
due to its simplicity, the agent without any exploration is better off in this comparison.
Note, however, that parameter space noise outperforms both forms of action space noise,
presumably due to the fact that its actions are much less subject to random jitter, which
seems to make it quite hard to maintain control over the pendulum.

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

35

30

25

20

15

10

5

M
ed

ia
n

R
et

ur
n

Reacher-v1

parameter space noise
correlated action noise
uncorrelated action noise
no exploration

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

10

20

30

40

50

M
ed

ia
n

R
et

ur
n

Swimmer-v1

parameter space noise
correlated action noise
uncorrelated action noise
no exploration

(b)

Figure 5.10: Median DDPG returns for Reacher (left) and Swimmer (right) with four
different exploration methods. Returns are smoothed slightly to remove noise.

On Reacher (Figure 5.10a), parameter space noise seems to fare worst when compared
against all other exploration methods. We are not sure why this is the case, but notice
that no exploration outperforms all other methods on this task. This seems to indicate
that the agent explores sufficiently without any exploration mechanism and, for some rea-
son, parameter space noise seems to hinder performance significantly. Regarding our result
on Swimmer (Figure 5.10b), we conclude that none of the exploration methods seem to
achieve good policies here. We believe that this is again a problem with the inherent

38

5.3. Continuous Control Experiments 39

stability of DDPG where the agent is simply incapable of learning from the experience it
generates. This claim is supported by the fact that no exploration again performs compa-
rably, indicating that exploration is not a limiting factor but rather algorithm stability is.
In both cases, parameter space noise does not seem to make a significant difference.

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

500

1000

1500

2000

2500

M
ed

ia
n

R
et

ur
n

Walker2d-v1

parameter space noise
correlated action noise
uncorrelated action noise
no exploration

Figure 5.11: Median DDPG returns for Walker2d with four different exploration methods.
Returns are smoothed slightly to remove noise.

Finally, on Walker2d (Figure 5.11), parameter space noise seems to again lead performance,
followed by uncorrelated action noise. As in previous cases, the learning progress seems
to be again quite unstable, which is yet another instance of the aforementioned stability
problems of DDPG. Interestingly, even on this relatively complicated task, DDPG with
no exploration still seems to perform somewhat competitively.

Overall, we find that parameter space noise vastly helps on HalfCheetah, where it avoids
converging towards sub-optimal policies and always seems to find high performing ones.
On other environments, parameter space noise does not seem to provide a significant
benefit. However, as we have already described, we find that no exploration typically
achieves very similar results. This is worrying since it indicates that exploration seems
unnecessary to begin with. We believe that this is due to two factors. First, the rewards
in all continuous control tasks are inherently dense, where a non-zero reward is emitted in
every step. Second, the start conditions of the environment are significantly randomized,
which, combined with the random initialization of the policy, presumably already covers
a significant fraction of the state space. These two factors combined seem to make the
OpenAI Gym continuous control problems unsuitable for testing for exploration, which
has similarly been noted by Houthooft et al. [2016].

5.3.3.2 Continuous Control with Sparse Rewards

In the previous section, we have shown that exploration is not a real concern on the stan-
dard OpenAI Gym continuous control since DDPG without any exploration still achieves
comparable performance on most problems. We therefore now turn to the previously de-
scribed environments that exhibit a sparse reward structure to allow us to directly test for
the exploration capabilities of our proposed method in continuous action spaces.

Similar to before, we plot the achieved return over training steps with exploration noise
enabled since we are, in particular, interested in this behavior. Since we aggregate over mul-

39

40 5. Experiments

tiple runs for each configuration to avoid fluctuations due to the random seed, we depict the
median (line) and the interquartile range (shaded area) for each of the four exploration con-
figurations: adaptive parameter noise, correlated action space noise (Ornstein-Uhlenbeck
process), uncorrelated action space noise (Gaussian), and no exploration altogether.

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0.0

0.2

0.4

0.6

0.8

1.0

M
ed

ia
n

R
et

ur
n

SparseMountainCar

parameter space noise
correlated action noise
uncorrelated action noise
no exploration

Figure 5.12: Median DDPG returns for SparseMountainCar with four different exploration
methods. Returns are smoothed slightly to remove noise.

MountainCar (Figure 5.12) is a first naturally sparse environment that shows very encour-
aging result: Only parameter space noise learns a successful strategy whereas all other
methods of exploration fail. We believe that the property of consistent exploration is what
makes parameter space so much more efficient in this case. Since the behavior policy is
fully conditioned on the state, the mountain car can consistently collect momentum until
it reaches the goal position. Correlated and uncorrelated action space noise instead cause
oscillation in the exploration behavior, which causes the mountain car to never obtain
sufficient momentum to drive up the hill. It thus comes as no surprise that our control,
which disables all exploration, does not find a solution since it will simply get stuck in the
valley.

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

100

200

300

400

M
ed

ia
n

R
et

ur
n

SparsePendulumSwingup

parameter space noise
correlated action noise
uncorrelated action noise
no exploration

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

50

100

150

200

250

300

350

400

M
ed

ia
n

R
et

ur
n

SparseDoublePendulumSwingup

parameter space noise
correlated action noise
uncorrelated action noise
no exploration

(b)

Figure 5.13: Median DDPG returns for SparsePendulumSwingup (left) and Sparse-
DoublePendulumSwingup (right) with four different exploration methods. Returns are
smoothed slightly to remove noise.

40

5.3. Continuous Control Experiments 41

Similarly, on SparsePendulumSwingup (Figure 5.13a), only parameter space noise learns a
successful strategy to solve the environment. All other configurations never even obtain a
single reward during training. Clearly, exploration is important in this environment, and
parameter space noise clearly outperforms traditional action space noise. In contrast and
quite interestingly, all exploration strategies succeed on the conceptually similar Sparse-
DoublePendulumSwingup (Figure 5.13b). However, the results still make sense: First, our
control experiment that enables all exploration clearly takes significantly longer to find
a successful strategy and also converges to a worse solution even though we depict the
training performance. This also indicates that exploration is surprisingly unnecessary in
this specific environment. We believe that this is due to the chaotic nature of the problem:
It is somewhat likely that a random action combined with a fortunate initial state leads
to a state where the pendulum is swung such that it achieves the threshold. It therefore
seems consistent that parameter space noise, correlated action space noise, and uncorre-
lated action space noise perform very similarly on this environment since exploration helps
on this environment but is far from crucial.

SparseHalfCheetah (Figure 5.14a) is a quite challenging environment in which all explo-
ration methods fail. To better understand this failure case, we visualized the behavior
during training. Even though parameter space noise results in locomotion behavior occa-
sionally, it is typically undirected and thus does not cover the necessary minimum distance
of 5 meters before a reward is obtained. Finally, we consider the SparseSwimmerGather
(Figure 5.14b) environment. This is an extremely challenging environment which requires
the agent to first learn a locomotion skill (“swimming”) and then requires it to follow a
goal-driven high policy (“collect the apples”) by using this low-level skill to achieve it.
Unfortunately, this environment proved to be too hard for parameter space noise explo-
ration, which never manages to develop the necessary locomotion and thus never receives
a learning signal. The same holds true for all other exploration and for the control.

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0.04

0.02

0.00

0.02

0.04

M
ed

ia
n

R
et

ur
n

SparseHalfCheetah

parameter space noise
correlated action noise
uncorrelated action noise
no exploration

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0.04

0.02

0.00

0.02

0.04

M
ed

ia
n

R
et

ur
n

SparseSwimmerGather

parameter space noise
correlated action noise
uncorrelated action noise
no exploration

(b)

Figure 5.14: Median DDPG returns for SparseHalfCheetah (left) and SparseSwimmer-
Gather (right) with four different exploration methods. Returns are smoothed slightly to
remove noise.

In summary, we believe that this set of experiments in sparse domains highlights the su-
perior exploration behavior of parameter space noise over action space noise. However,
it also highlights that parameter space noise alone cannot drive sufficient exploration in
domains that require the development of non-trivial basic skills like locomotion in order
to achieve higher-level goals. This is apparent in both the SparseHalfCheetah and Spars-
eSwimmerGather environments. That being said, parameter space noise was designed to
be a conceptually simple yet effective drop-in replacement for action space noise. Our
results on these sparse environments highlight again that parameter space noise indeed

41

42 5. Experiments

results in richer exploration behavior.

5.4 Robot Manipulation Experiments

In the previous experimental sections, we evaluated the performance of parameter space
noise for discrete and continuous environments. However, so far all environments that we
considered were more of theoretical importance and had no immediate real-world applica-
tions. We therefore now evaluate parameter space noise on challenging robot manipulation
tasks that are based on real-world models and have real-world applications.

5.4.1 Environments

Figure 5.15: The research robotics platform from Fetch Robotics used for all our experi-
ments. Product image obtained from http: // fetchrobotics .com .

We use the environments that were recently proposed by Andrychowicz et al. [2017] since
they use a real-world robot and exhibit sparse reward structures. All environments use
the Fetch Robotics robot platform, which is depicted in Figure 5.15 and that features a
7 DoF arm with a 2-fingered gripper. We do not use the platform’s capability to move
around since all tasks only require stationary manipulation skills.

To simplify the control problem, we use position control in Cartesian space to control the
movement of the robot’s arm. Instead of producing absolute coordinates, we use relative
control, i.e. the policy produces an offset relative to the current position of the robot’s
end effector. Since all tasks further interact with objects that lie flat on the surface of a
table, we ignore the rotation of the robot’s end effector fixed and thus only consider the
position instead of the entire pose. We use inverse kinematics to find the joint angles of the
robot arm given the desired end effector pose after applying the delta as predicted by the
policy and with fixed rotation. The gripper is modeled as having 2 distinct states: open
and close. Again, we use position control to move the 2 fingers to the respective position
depending on this state. The action space for all tasks is thus A ⊂ R4, where the first 3
dimensions define the relative offset in Cartesian space and the last dimension models the
gripper, which gets discretized into a binary value by thresholding.

42

http://fetchrobotics.com

5.4. Robot Manipulation Experiments 43

In all experiments, we assume direct knowledge of the entire state. When deploying on
the physical robot, the state can then either be inferred by systems that predict it given
an image or other sensor readings (e.g. Tobin et al. [2017]) or the network can be trained
directly from images end-to-end by utilizing the available information about state in sim-
ulation (e.g. Pinto et al. [2017]). However, we only consider the simulated case since we
focus on the problem of exploration, which is orthogonal to the problem of transferability.
The concrete state depends on the task at hand and we describe it in greater detail when
introducing the concrete tasks.

Finally, all tasks utilize fully sparse reward functions that are based on the achievement
of a goal state. In practice, we follow the setup described by Andrychowicz et al. [2017]
and use the following reward function for all environments:

r(s, g,a) =

{
0 if g = m(s),

−1 otherwise,
(5.2)

where m : S 7→ G transforms a state into the corresponding goal (compare Section 2.3.4
for details on this notation). In other words, the agent receives a reward of −1 if the goal
state has not yet been achieved and a reward of 0 otherwise. Notice that this formula-
tion is equivalent to r(·, ·, ·) + 1 and we simply use this formulation since it follows what
Andrychowicz et al. [2017] describe.

(a) Pick & Place

(b) Push

(c) Slide

Figure 5.16: Three robot manipulation problems with sparse rewards. All problems were
proposed by Andrychowicz et al. [2017]. We also include a fourth, simple task, Reach,
which is not depicted here.

We again use MuJoCo [Todorov et al., 2012] to efficiently simulate all environments, in-
cluding an open-sourced model of Fetch.10 More concretely, we consider the following 3
tasks that were originally proposed by Andrychowicz et al. [2017] and which are illustrated
in Figure 5.16.

• Pick & Place (S ⊂ R22,G ⊂ R3,A ⊂ R4) The agent controls the arm and gripper
of a Fetch robot. The goal is to move a wooden block that lies on the surface of
a table to a goal position, which is above the surface of the table. In order to do
so, the robot has to first grasp the object and then lift it up and move it towards

10https://github.com/openai/mujoco-py/tree/master/xmls/fetch

43

44 5. Experiments

the goal position. We include a single demonstration frame that shows a successful
grasp to aid with learning this multi-step problem. The agent observes the state of
the robot arm (i.e. joint positions and velocities), the gripper position, as well as
the position of the wooden block and the goal position.

• Push (S ⊂ R22,G ⊂ R3,A ⊂ R3) The agent controls the arm of a Fetch robot while
the gripper is kept closed. The goal is to move a wooden block that lies on the surface
of a table towards a goal position on the table surface. Since the gripper is closed,
the robot has to push the block towards that goal position, likely requiring multiple
such pushes. The agent observes the state of the robot arm (i.e. joint positions and
velocities) as well as the position of the wooden block and the goal position. For this
task, we include an additional penetration penalty to discourage the agent to exploit
the soft constrained realization of the physics simulation.

• Slide (S ⊂ R22,G ⊂ R3,A ⊂ R3) The agent controls the arm of a Fetch robot
while the gripper is kept closed. The goal is to slide a puck across a long table with
little surface friction (think air hockey) towards a goal position. The goal position is
selected such that the robot cannot reach it and has to indeed slide the puck towards
it. The agent observes the state of the robot arm (i.e. joint positions and velocities)
as well as the position of the puck and the goal position.

• Reach (S ⊂ R10,G ⊂ R3,A ⊂ R3) The agent controls the arm of a Fetch robot
while the gripper is kept closed. The goal is to simply move the end effector towards
a goal position. The agent observes the state of the robot arm (i.e. joint positions
and velocities) as well as the position of the goal. This is a very simple task and is
mostly included as a control, where we expect all agents to be able to learn.

5.4.1.1 Experimental Setup

For the following experiments, we use DDPG with an actor and critic network consisting
of 3 layers with 64 ReLu units each. In contrast to the previous experiments, we include
actions immediately to follow the setup described by Andrychowicz et al. [2017] as closely
as possible. Since we wish to perturb the network, we include layer normalization [Ba et al.,
2016] between all layers (compare Section 4.2). In order to ensure that actions are bound,
we use a tanh activation in the last layer of the actor network, thus ensuring that actions
are in [−1, 1]. If an environment requires actions within different bounds, we rescale them
appropriately before execution in the environment. We also include layer normalization
in all networks and for all exploration methods since we found that it generally improves
performance of all methods and significantly stabilizes training. For the target networks,
we use soft updates with τ = 0.001. We use the Adam optimizer [Kingma and Ba,
2014] with batch sizes of 128 to train both the actor and the critic network. We use a
use a learning rate of 10−3 to train both networks. To generate rollout data, we use an
implementation that uses 16 simulations in parallel. In all experiments, we use a replay
buffer that holds up to 100 000 transitions. In all cases, we use γ = 0.98 to discount returns
and apply the normalization of states as previously described. All hyperparameters are
conveniently summarized in Table 5.4.

We consider four different configurations:

• Exploration with parameter space noise In this configuration, we use param-
eter space noise as described in Chapter 4: at = π̃(s). In order to ensure a fair
comparison, we use adaptive parameter space noise as described in Section 4.3.2
such that we achieve a perturbation as measured in action space with σ = 0.1.

• Exploration with action space noise In this configuration, we include uncorre-
lated additive Gaussian noise before executing an action: at = π(s) + N (0, σ2I)

44

5.4. Robot Manipulation Experiments 45

Table 5.4: Hyperparameters for HER and DDPG experiments.

Hyperparameter Value

Soft target network update parameter τ τ = 10−3

Optimizer Adam [Kingma and Ba, 2014]
Batch size 128
Actor learning rate 10−3

Critic learning rate 10−3

Training steps 500 000
Epoch length 2 500 steps
Time horizon T 50
Replay buffer size 105

Discount factor γ 0.98
Network architecture 3 layers with 64 ReLu units each

HER replay strategy future

HER replay ration 4:1

Random action probability ε 0.2
Additive Gaussian noise scale σ 0.1

Parameter noise adaption interval (Tadapt) 50
Parameter noise distance measure Section 4.3.2

with σ = 0.1. To follow Andrychowicz et al. [2017], we also include a version of
ε-greedy exploration adapted for the continuous case: With probability ε, we take
a completely random action by uniformly sampling from the action space, and with
probability 1 − ε, we execute the action predicted by the policy plus the additive
Gaussian noise.

• Exploration with HER and action space noise In this configuration, we use
the same action space exploration as described earlier and combine it with HER. We
replay experience with a ratio of 4 : 1, meaning that we sample four times as much
HER data compared to standard experience replay data (compare Section 2.3.4).

• Exploration with parameter space noise In this configuration, we use the same
parameter space exploration as described earlier and combine it with HER. We replay
experience with a ratio of 4 : 1, meaning that we sample four times as much HER
data compared to standard experience replay data (compare Section 2.3.4).

The goal of these experiments is to compare vanilla DDPG against DDPG with HER
(usually abbreviated as only HER). Furthermore, we wish to investigate if parameter
space noise aids exploration if combined with HER.

5.4.2 Results

We start by considering the simplest environment: Reach. As mentioned before, this
environment is mostly included as a control since we expect all algorithms to be able
to learn on this task. In contrast to previous experiments, we now use the success rate
and plot it over training epochs (1 epoch corresponds to 2 500 steps) since it is a more
meaningful measure for these tasks, which is simply defined as:

success rate =
number of successful attempts

number of total attempts
. (5.3)

45

46 5. Experiments

Like before, we repeat the experiment multiple times using different random seeds and plot
the median (line) and the interquartile range (shaded area) of the success rate. Results
for Reach are depicted in Figure 5.17.

0 25 50 75 100 125 150 175 200
Epoch

0.0

0.2

0.4

0.6

0.8

1.0
M

ed
ia

n
S

uc
ce

ss
 R

at
e

Reach

DDPG w/ parameter noise
DDPG w/ action noise
HER w/ parameter noise
HER w/ action noise

Figure 5.17: Median success rate for Reach with four different exploration methods. Re-
turns are smoothed slightly to remove noise.

As expected, all configurations are able to learn on this simple task. Interestingly, param-
eter space noise gets outperformed by action space noise if used with vanilla DDPG. We
believe that this is due to the fact that completely random exploration is actually beneficial
here since it is much more likely to “hit” the target position by moving around randomly.
Parameter space noise instead drives consistent exploration, but if it consistently moves
in the wrong direction it does not help. This theory is backed up by the fact that HER
with action space noise and parameter space performs virtually the same.

We now consider the Pick & Place task. This is a much more challenging environment
and we expect that exploration is an important property here. We further note that this
environment is extremely hard to learn for vanilla DDPG since the agent needs to pick up
the block and move it to a goal position. Results are depicted in Figure 5.18.

Surprisingly, vanilla DDPG with parameter space noise is able to successfully learn this
environment whereas vanilla DDPG with action space noise never even obtains a reward.
This again highlights that parameter space noise can drive consistent and deep explo-
ration, even on tasks that are very challenging (in this case it requires two high-level
actions, i.e. picking up the block and then moving it towards the goal position) and ex-
tremely sparse. Furthermore, we can see that HER is able to successfully learn with both
exploration strategies. However, parameter space noise seems to learn slightly faster and,
more importantly, seems to result in more stable and consistent progress.

Next, we analyze the results for the Push task, which are depicted in Figure 5.19. On
this environment, we find that vanilla DDPG is unfortunately unable to learn in both
cases, i.e. parameter space noise alone does not seem to drive sufficient exploration here.
We believe that the problem here are the complicated contact dynamics between gripper
and block: In both cases, DDPG occasionally achieves a non-zero success rate but never
seems to successfully learn from this experience, presumably because it never“understands”
how different interactions with the block change its position. HER, on the other hand,
excels at this since it always learns something from each interaction with the block. Both

46

5.4. Robot Manipulation Experiments 47

0 25 50 75 100 125 150 175 200
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

M
ed

ia
n

S
uc

ce
ss

 R
at

e

Pick & Place

DDPG w/ parameter noise
DDPG w/ action noise
HER w/ parameter noise
HER w/ action noise

Figure 5.18: Median success rate for Pick & Place with four different exploration methods.
Returns are smoothed slightly to remove noise.

configurations of HER with action noise and parameter noise for exploration are capable
of learning the task at hand. Like before, parameter space noise seems to achieve slightly
more consistent results compared to action space noise, but on this task the advantage is
less obvious.

0 25 50 75 100 125 150 175 200
Epoch

0.0

0.2

0.4

0.6

0.8

M
ed

ia
n

S
uc

ce
ss

 R
at

e

Push

DDPG w/ parameter noise
DDPG w/ action noise
HER w/ parameter noise
HER w/ action noise

Figure 5.19: Median success rate for Push with four different exploration methods. Returns
are smoothed slightly to remove noise.

Finally, we consider the last task, which is Slide. Results are depicted in Figure 5.20. On
this task, all environments are again able to learn strategies, although they never achieve
very high success rates. HER with parameter space noise again outperforms HER with
traditional action space noise, again indicating that it seems to result in richer exploration
behavior. However, due to the fact that all four configurations learn on this environment,
not too much can be read into the results on this specific environment.

47

48 5. Experiments

0 25 50 75 100 125 150 175 200
Epoch

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

M
ed

ia
n

S
uc

ce
ss

 R
at

e

Slide

DDPG w/ parameter noise
DDPG w/ action noise
HER w/ parameter noise
HER w/ action noise

Figure 5.20: Median success rate for Slide with four different exploration methods. Returns
are smoothed slightly to remove noise.

Overall, these results show that parameter space noise is capable of exploring on extremely
challenging results with sparse rewards even with vanilla DDPG (compare results for Pick
& Place). Furthermore, our results confirm that parameter space noise can successfully
be combined with more sophisticated exploration mechanisms like Hindsight Experience
Replay. This is an important results since we believe that exploration can only be solved
by a system that learns high-level objectives and then relies on simpler exploration like
action space noise and parameter space noise to discover and fine-tune the behavior that
can achieve these high-level skills. As shown in this section, parameter space noise can
indeed be combined in such a fashion and typically improves performance in these cases.
We therefore believe that parameter space noise should be preferred over action space
noise in such cases and have empirically confirmed this claim.

48

6. Conclusion

6.1 Summary

Exploration in today’s reinforcement learning is still mostly realized using action space
noise (e.g. ε-greedy or additive Gaussian noise), which has been around for centuries.
While more sophisticated exploration schema exist, they often are quite complicated to
implement. Furthermore, these schema often also require some basic exploration capabil-
ities, which are typically still realized through action space noise exploration. The goal of
this thesis was to investigate whether a conceptually simple idea we call parameter space
noise can replace this traditional action space noise.

In this thesis, we first derive the necessary theory behind our approach and analyze why
the resulting parameter space noise should drive more consistent exploration. We then
analyze two potential problems that we face when applying parameter perturbations to
policies that are implemented using deep neural networks. To quickly summarize: The
first problem is due to the fact that we perturb a network with thousands of parameters
that exhibit vastly different sensitivities with a noise process that is parameterized by
just a single scalar scale parameter. We mitigate this first problem by re-parameterizing
the neural network using layer normalization [Ba et al., 2016]. The second problem is
concerned with picking a suitable scale for the perturbation noise. This is notoriously
difficult since we cannot intuitively understand the effect of a perturbation in parameter
space due to its high dimensionality and complex non-linear behavior. Instead, we propose
to address the problem by relating the perturbation in parameter space into action space,
where we can more easily reason about it. We can then use this information to adapt the
scale of the perturbation such that a threshold value w.r.t. to the desired perturbation in
action space is achieved. Using this insight, we devise an adaption scheme that rescales
the noise magnitude over time, which we call adaptive parameter space noise.

To evaluate the performance of our proposed method, we first consider a simple toy ex-
ample that specifically tests for the exploration capabilities of a reinforcement learning
algorithm. On this task, we show that parameter space noise vastly outperforms ε-greedy
action space noise exploration. Furthermore, we compare our approach against Boot-
strapped DQN [Osband et al., 2016] and demonstrate that parameter space noise again
compares favorably, although it is conceptually much simpler.

To demonstrate the effectiveness of our approach in more complex domains, we evaluate
parameter space noise on 21 Atari games of varying complexity with dense and sparse

49

50 6. Conclusion

rewards. In our experiments, we clearly outperform the ε-greedy baseline in 8 out of
these 21 games and perform comparably on the remaining ones. This demonstrates that
parameter space noise is a suitable drop-in replacement for action space noise that works
with state-of-the-art deep reinforcement learning algorithms like Deep Q-Networks (DQN,
Mnih et al. [2015]). We further show that parameter space noise effectively utilizes the
improved exploration behavior of Evolutionary Strategies (ES, Salimans et al. [2017]) while
being multiple orders of magnitude more sample efficient.

Since we are in particular interested in robotics applications, we perform an exhaustive
evaluation on 7 continuous control problems that are part of OpenAI Gym [Brockman
et al., 2016] as well as 5 modified environments that exhibit a sparse reward structure
and specifically test for exploration capabilities. We show that Deep Deterministic Policy
Gradient (DDPG, Lillicrap et al. [2015]) can be combined with parameter space noise to
solve the majority of these challenging domains. This is especially apparent on the sparse
environments that were specifically selected to test for exploration, on which parameter
space noise successfully learns on 3 out of 5 of these challenging tasks, whereas action
space noise can only solve a single one.

Lastly, we consider some real-world robotics manipulation problems that are learned using
only sparse rewards. We show that, again, parameter space noise alone is capable of
learning in a complex pick & place environment where regular action space noise fails
completely. Furthermore, we show that parameter space noise can be combined with
Hindsight Experience Replay (HER, Andrychowicz et al. [2017]). This suggests that more
sophisticated exploration methods can successfully combined with our approach, which
typically improves convergence speed and stability.

In summary, we have shown that parameter space noise can be combined with a range
of state-of-the-art deep reinforcement learning algorithms like DQN and DDPG. Param-
eter space noise can also be used in environments with discrete and continuous action
spaces and effectively explores even in settings with extremely sparse rewards. Finally,
parameter space noise can be combined with more sophisticated exploration methods like
HER, which we believe makes it an important building block towards“solving”exploration.
Implementation for DQN and DDPG have also been open-sourced.1

6.2 Future Work

There are multiple interesting extension of the currently proposed version of parameter
space noise. First, it would be interesting to explore other adaption schema. In particular,
it would be beneficial to learn a perturbation scale for each parameter. Caution must be
exercised when doing so since the agent may simply “learn” to disable the perturbation
noise such that it can always execute its current policy, which it believes to be optimal.
If, however, the optimal scale of the perturbation could be learned, it could potentially
result in further improved exploration behavior and would also avoid the devised adaption
scheme proposed in this work.

More experiments that combine parameter space noise with more state-of-the-art rein-
forcement learning algorithms would also be interesting. For example, Proximal Policy
Optimization (PPO, Schulman et al. [2017]) has recently achieved impressive results and
was shown to be very stable. Additionally, there are a wide range of improvements over the
original version of DQN (van Hasselt [2010], Schaul et al. [2015b], Wang et al. [2016]) and
it would be interesting to evaluate how much parameter space noise benefits exploration
on these architectures.

1https://github.com/openai/baselines

50

https://github.com/openai/baselines

6.2. Future Work 51

Finally, we have obtained promising results when combining parameter space noise with
more sophisticated exploration methods like HER. It would be interesting to extend this
analysis towards other exploration schema that still rely on some form of action space noise
exploration. Examples for this are recent publications by Tang et al. [2016], Bellemare
et al. [2016], and Pathak et al. [2017a], all of which introduce some novel idea but still
require some form of action space exploration that could be replaced with parameter space
noise.

51

Bibliography

J. Achiam and S. Sastry. Surprise-based intrinsic motivation for deep reinforcement learn-
ing. CoRR, abs/1703.01732, 2017. URL http://arxiv.org/abs/1703.01732.

M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. Mc-
Grew, J. Tobin, P. Abbeel, and W. Zaremba. Hindsight experience replay. CoRR,
abs/1707.01495, 2017. URL http://arxiv.org/abs/1707.01495.

L. J. Ba, R. Kiros, and G. E. Hinton. Layer normalization. CoRR, abs/1607.06450, 2016.
URL http://arxiv.org/abs/1607.06450.

D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning
to align and translate. CoRR, abs/1409.0473, 2014. URL http://arxiv.org/abs/
1409.0473.

M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environment:
An evaluation platform for general agents. Journal of Artificial Intelligence Research,
47:253–279, 2013. doi: 10.1613/jair.3912. URL http://dx.doi.org/10.1613/jair.3912.

M. G. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and R. Munos.
Unifying count-based exploration and intrinsic motivation. In Advances in Neu-
ral Information Processing Systems 29: Annual Conference on Neural Informa-
tion Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, pages 1471–
1479, 2016. URL http://papers.nips.cc/paper/6383-unifying-count-based-
exploration-and-intrinsic-motivation.

D. P. Bertsekas. Dynamic Programming: Deterministic and Stochastic Models. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA, 1987. ISBN 0132215810.

R. I. Brafman and M. Tennenholtz. R-MAX - A general polynomial time algorithm for
near-optimal reinforcement learning. Journal of Machine Learning Research, 3:213–231,
2002. URL http://www.jmlr.org/papers/v3/brafman02a.html.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and
W. Zaremba. OpenAI gym. arXiv preprint arXiv:1606.01540, 2016. URL http:

//arxiv.org/abs/1606.01540.

Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel. Benchmarking deep re-
inforcement learning for continuous control. In Proceedings of the 33nd International
Conference on Machine Learning, ICML 2016, New York City, NY, USA, June 19-
24, 2016, pages 1329–1338, 2016. URL http://jmlr.org/proceedings/papers/v48/
duan16.html.

M. Fortunato, M. G. Azar, B. Piot, J. Menick, I. Osband, A. Graves, V. Mnih, R. Munos,
D. Hassabis, O. Pietquin, C. Blundell, and S. Legg. Noisy networks for exploration.
CoRR, abs/1706.10295, 2017. URL http://arxiv.org/abs/1706.10295.

53

http://arxiv.org/abs/1703.01732
http://arxiv.org/abs/1707.01495
http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
http://dx.doi.org/10.1613/jair.3912
http://papers.nips.cc/paper/6383-unifying-count-based-exploration-and-intrinsic-motivation
http://papers.nips.cc/paper/6383-unifying-count-based-exploration-and-intrinsic-motivation
http://www.jmlr.org/papers/v3/brafman02a.html
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1606.01540
http://jmlr.org/proceedings/papers/v48/duan16.html
http://jmlr.org/proceedings/papers/v48/duan16.html
http://arxiv.org/abs/1706.10295

54 Bibliography

Y. Gal and Z. Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In Proceedings of the 33nd International Conference on
Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016, pages
1050–1059, 2016. URL http://jmlr.org/proceedings/papers/v48/gal16.html.

T. Glasmachers, T. Schaul, and J. Schmidhuber. A natural evolution strategy for
multi-objective optimization. In Parallel Problem Solving from Nature - PPSN XI,
11th International Conference, Kraków, Poland, September 11-15, 2010, Proceedings,
Part I, pages 627–636, 2010a. doi: 10.1007/978-3-642-15844-5 63. URL https:

//doi.org/10.1007/978-3-642-15844-5_63.

T. Glasmachers, T. Schaul, Y. Sun, D. Wierstra, and J. Schmidhuber. Exponential natural
evolution strategies. In Genetic and Evolutionary Computation Conference, GECCO
2010, Proceedings, Portland, Oregon, USA, July 7-11, 2010, pages 393–400, 2010b. doi:
10.1145/1830483.1830557. URL http://doi.acm.org/10.1145/1830483.1830557.

I. J. Goodfellow, Y. Bengio, and A. C. Courville. Deep Learning. Adaptive com-
putation and machine learning. MIT Press, 2016. ISBN 978-0-262-03561-3. URL
http://www.deeplearningbook.org/.

A. Graves, A. Mohamed, and G. E. Hinton. Speech recognition with deep recurrent
neural networks. In IEEE International Conference on Acoustics, Speech and Signal
Processing, ICASSP 2013, Vancouver, BC, Canada, May 26-31, 2013, pages 6645–
6649, 2013. doi: 10.1109/ICASSP.2013.6638947. URL https://doi.org/10.1109/
ICASSP.2013.6638947.

S. Gu, T. P. Lillicrap, I. Sutskever, and S. Levine. Continuous deep q-learning with model-
based acceleration. In Proceedings of the 33nd International Conference on Machine
Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016, pages 2829–2838,
2016. URL http://jmlr.org/proceedings/papers/v48/gu16.html.

N. Heess, D. TB, S. Sriram, J. Lemmon, J. Merel, G. Wayne, Y. Tassa, T. Erez, Z. Wang,
S. M. A. Eslami, M. A. Riedmiller, and D. Silver. Emergence of locomotion behaviours
in rich environments. CoRR, abs/1707.02286, 2017. URL http://arxiv.org/abs/
1707.02286.

G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke,
P. Nguyen, T. N. Sainath, et al. Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups. IEEE Signal Process. Mag.,
29(6):82–97, 2012. doi: 10.1109/MSP.2012.2205597. URL https://doi.org/10.1109/
MSP.2012.2205597.

S. Hochreiter. The vanishing gradient problem during learning recurrent neural nets and
problem solutions. International Journal of Uncertainty, Fuzziness and Knowledge-
Based Systems, 6(02):107–116, 1998.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

R. Houthooft, X. Chen, X. Chen, Y. Duan, J. Schulman, F. D. Turck, and
P. Abbeel. VIME: Variational information maximizing exploration. In Ad-
vances in Neural Information Processing Systems 29 (NIPS), pages 1109–1117,
2016. URL http://papers.nips.cc/paper/6591-vime-variational-information-
maximizing-exploration.

S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In Proceedings of the 32nd International Conference
on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015, pages 448–456, 2015.
URL http://jmlr.org/proceedings/papers/v37/ioffe15.html.

54

http://jmlr.org/proceedings/papers/v48/gal16.html
https://doi.org/10.1007/978-3-642-15844-5_63
https://doi.org/10.1007/978-3-642-15844-5_63
http://doi.acm.org/10.1145/1830483.1830557
http://www.deeplearningbook.org/
https://doi.org/10.1109/ICASSP.2013.6638947
https://doi.org/10.1109/ICASSP.2013.6638947
http://jmlr.org/proceedings/papers/v48/gu16.html
http://arxiv.org/abs/1707.02286
http://arxiv.org/abs/1707.02286
https://doi.org/10.1109/MSP.2012.2205597
https://doi.org/10.1109/MSP.2012.2205597
http://papers.nips.cc/paper/6591-vime-variational-information-maximizing-exploration
http://papers.nips.cc/paper/6591-vime-variational-information-maximizing-exploration
http://jmlr.org/proceedings/papers/v37/ioffe15.html

Bibliography 55

M. J. Kearns and S. P. Singh. Near-optimal reinforcement learning in polynomial time.
Machine Learning, 49(2-3):209–232, 2002. doi: 10.1023/A:1017984413808. URL http:

//dx.doi.org/10.1023/A:1017984413808.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014. URL http://arxiv.org/abs/1412.6980.

J. Kober and J. Peters. Policy search for motor primitives in robotics. In Advances in
Neural Information Processing Systems 21 (NIPS), pages 849–856, 2008. URL http://

papers.nips.cc/paper/3545-policy-search-for-motor-primitives-in-robotics.

J. Z. Kolter and A. Y. Ng. Near-bayesian exploration in polynomial time. In Proceedings of
the 26th Annual International Conference on Machine Learning, ICML 2009, Montreal,
Quebec, Canada, June 14-18, 2009, pages 513–520, 2009. doi: 10.1145/1553374.1553441.
URL http://doi.acm.org/10.1145/1553374.1553441.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in Neural Information Processing Systems 25:
26th Annual Conference on Neural Information Processing Systems 2012. Proceedings
of a meeting held December 3-6, 2012, Lake Tahoe, Nevada, United States., pages 1106–
1114, 2012. URL http://papers.nips.cc/paper/4824-imagenet-classification-
with-deep-convolutional-neural-networks.

P. R. Kumar and P. Varaiya. Stochastic systems: Estimation, identification, and adaptive
control. Prentice-Hall, Inc., Englewood Cliffs, NJ, USA, 1986. ISBN 1611974259.

Y. LeCun, Y. Bengio, and G. E. Hinton. Deep learning. Nature, 521(7553):436–444, 2015.
doi: 10.1038/nature14539. URL https://doi.org/10.1038/nature14539.

S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end training of deep visuomotor
policies. CoRR, abs/1504.00702, 2015. URL http://arxiv.org/abs/1504.00702.

S. Levine, P. Pastor, A. Krizhevsky, and D. Quillen. Learning hand-eye coordina-
tion for robotic grasping with deep learning and large-scale data collection. CoRR,
abs/1603.02199, 2016. URL http://arxiv.org/abs/1603.02199.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wier-
stra. Continuous control with deep reinforcement learning. CoRR, abs/1509.02971,
2015. URL http://arxiv.org/abs/1509.02971.

S. Linnainmaa. The representation of the cumulative rounding error of an algorithm as
a taylor expansion of the local rounding errors. Master’s Thesis (in Finnish), Univ.
Helsinki, pages 6–7, 1970.

A. L. Maas, A. Y. Hannun, and A. Y. Ng. Rectifier nonlinearities improve neural network
acoustic models. In Proceedings of the International Conference on Machine Learning
(ICML), volume 30, 2013.

W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous
activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. A.
Riedmiller. Playing atari with deep reinforcement learning. CoRR, abs/1312.5602, 2013.
URL http://arxiv.org/abs/1312.5602.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. A. Riedmiller, A. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik,
I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis. Human-
level control through deep reinforcement learning. Nature, 518(7540):529–533, 2015. doi:
10.1038/nature14236. URL http://dx.doi.org/10.1038/nature14236.

55

http://dx.doi.org/10.1023/A:1017984413808
http://dx.doi.org/10.1023/A:1017984413808
http://arxiv.org/abs/1412.6980
http://papers.nips.cc/paper/3545-policy-search-for-motor-primitives-in-robotics
http://papers.nips.cc/paper/3545-policy-search-for-motor-primitives-in-robotics
http://doi.acm.org/10.1145/1553374.1553441
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
https://doi.org/10.1038/nature14539
http://arxiv.org/abs/1504.00702
http://arxiv.org/abs/1603.02199
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1312.5602
http://dx.doi.org/10.1038/nature14236

56 Bibliography

V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver, and
K. Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In Proceedings
of the 33nd International Conference on Machine Learning, ICML 2016, New York
City, NY, USA, June 19-24, 2016, pages 1928–1937, 2016. URL http://jmlr.org/
proceedings/papers/v48/mniha16.html.

I. Osband, C. Blundell, A. Pritzel, and B. V. Roy. Deep exploration via bootstrapped
DQN. In Advances in Neural Information Processing Systems 29 (NIPS), pages
4026–4034, 2016. URL http://papers.nips.cc/paper/6501-deep-exploration-via-
bootstrapped-dqn.

G. Ostrovski, M. G. Bellemare, A. van den Oord, and R. Munos. Count-based exploration
with neural density models. arXiv preprint arXiv:1703.01310, 2017. URL http://

arxiv.org/abs/1703.01310.

D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell. Curiosity-driven exploration by self-
supervised prediction. In Proceedings of the 34th International Conference on Machine
Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, pages 2778–2787,
2017a. URL http://proceedings.mlr.press/v70/pathak17a.html.

D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell. Curiosity-driven exploration by self-
supervised prediction. In Proceedings of the 34th International Conference on Machine
Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, pages 2778–2787,
2017b. URL http://proceedings.mlr.press/v70/pathak17a.html.

J. Peters and S. Schaal. Natural actor-critic. Neurocomputing, 71(7-9):1180–
1190, 2008. doi: 10.1016/j.neucom.2007.11.026. URL http://dx.doi.org/10.1016/
j.neucom.2007.11.026.

L. Pinto and A. Gupta. Supersizing self-supervision: Learning to grasp from 50k tries and
700 robot hours. In 2016 IEEE International Conference on Robotics and Automation,
ICRA 2016, Stockholm, Sweden, May 16-21, 2016, pages 3406–3413, 2016. doi: 10.1109/
ICRA.2016.7487517. URL https://doi.org/10.1109/ICRA.2016.7487517.

L. Pinto, M. Andrychowicz, P. Welinder, W. Zaremba, and P. Abbeel. Asymmetric actor
critic for image-based robot learning. CoRR, abs/1710.06542, 2017. URL http://

arxiv.org/abs/1710.06542.

M. Plappert, R. Houthooft, P. Dhariwal, S. Sidor, R. Y. Chen, X. Chen, T. Asfour,
P. Abbeel, and M. Andrychowicz. Parameter space noise for exploration. CoRR,
abs/1706.01905, 2017. URL http://arxiv.org/abs/1706.01905.

A. Ranganathan. The Levenberg-Marquardt algorithm. Tutoral on LM algorithm, pages
1–5, 2004.

I. Rechenberg and M. Eigen. Evolutionsstrategie: Optimierung technischer Systeme nach
Prinzipien der biologishen Evolution. Frommann-Holzboog Stuttgart, 1973.

F. Rosenblatt. The perceptron: A probabilistic model for information storage and organi-
zation in the brain. Psychological review, 65(6):386, 1958.

T. Rückstieß, M. Felder, and J. Schmidhuber. State-dependent exploration for policy
gradient methods. In Proceedings of the European Conference on Machine Learning and
Knowledge Discovery in Databases ECML/PKDD, pages 234–249, 2008. doi: 10.1007/
978-3-540-87481-2 16. URL http://dx.doi.org/10.1007/978-3-540-87481-2_16.

D. E. Rumelhart, G. E. Hinton, R. J. Williams, et al. Learning representations by back-
propagating errors. Cognitive modeling, 5(3):1, 1988.

56

http://jmlr.org/proceedings/papers/v48/mniha16.html
http://jmlr.org/proceedings/papers/v48/mniha16.html
http://papers.nips.cc/paper/6501-deep-exploration-via-bootstrapped-dqn
http://papers.nips.cc/paper/6501-deep-exploration-via-bootstrapped-dqn
http://arxiv.org/abs/1703.01310
http://arxiv.org/abs/1703.01310
http://proceedings.mlr.press/v70/pathak17a.html
http://proceedings.mlr.press/v70/pathak17a.html
http://dx.doi.org/10.1016/j.neucom.2007.11.026
http://dx.doi.org/10.1016/j.neucom.2007.11.026
https://doi.org/10.1109/ICRA.2016.7487517
http://arxiv.org/abs/1710.06542
http://arxiv.org/abs/1710.06542
http://arxiv.org/abs/1706.01905
http://dx.doi.org/10.1007/978-3-540-87481-2_16

Bibliography 57

T. Salimans, I. J. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen. Im-
proved techniques for training gans. In Advances in Neural Information Processing Sys-
tems 29: Annual Conference on Neural Information Processing Systems 2016, December
5-10, 2016, Barcelona, Spain, pages 2226–2234, 2016. URL http://papers.nips.cc/
paper/6125-improved-techniques-for-training-gans.

T. Salimans, J. Ho, X. Chen, and I. Sutskever. Evolution strategies as a scalable al-
ternative to reinforcement learning. arXiv preprint arXiv:1703.03864, 2017. URL
http://arxiv.org/abs/1703.03864.

T. Schaul, T. Glasmachers, and J. Schmidhuber. High dimensions and heavy tails
for natural evolution strategies. In 13th Annual Genetic and Evolutionary Computa-
tion Conference, GECCO 2011, Proceedings, Dublin, Ireland, July 12-16, 2011, pages
845–852, 2011. doi: 10.1145/2001576.2001692. URL http://doi.acm.org/10.1145/
2001576.2001692.

T. Schaul, D. Horgan, K. Gregor, and D. Silver. Universal value function approxi-
mators. In Proceedings of the 32nd International Conference on Machine Learning,
ICML 2015, Lille, France, 6-11 July 2015, pages 1312–1320, 2015a. URL http:

//jmlr.org/proceedings/papers/v37/schaul15.html.

T. Schaul, J. Quan, I. Antonoglou, and D. Silver. Prioritized experience replay. CoRR,
abs/1511.05952, 2015b. URL http://arxiv.org/abs/1511.05952.

J. Schulman, S. Levine, P. Abbeel, M. I. Jordan, and P. Moritz. Trust region policy
optimization. In Proceedings of the 32nd International Conference on Machine Learning,
ICML 2015, Lille, France, 6-11 July 2015, pages 1889–1897, 2015a. URL http://

jmlr.org/proceedings/papers/v37/schulman15.html.

J. Schulman, S. Levine, P. Abbeel, M. I. Jordan, and P. Moritz. Trust region policy
optimization. In Proceedings of the 32nd International Conference on Machine Learning,
ICML 2015, Lille, France, 6-11 July 2015, pages 1889–1897, 2015b. URL http://

jmlr.org/proceedings/papers/v37/schulman15.html.

J. Schulman, P. Moritz, S. Levine, M. I. Jordan, and P. Abbeel. High-dimensional con-
tinuous control using generalized advantage estimation. CoRR, abs/1506.02438, 2015c.
URL http://arxiv.org/abs/1506.02438.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy op-
timization algorithms. CoRR, abs/1707.06347, 2017. URL http://arxiv.org/abs/
1707.06347.

H.-P. Schwefel. Numerische Optimierung von Computermodellen mittels der Evolution-
sstrategie, volume 1. Birkhäuser, Basel Switzerland, 1977.

F. Sehnke, C. Osendorfer, T. Rückstieß, A. Graves, J. Peters, and J. Schmid-
huber. Parameter-exploring policy gradients. Neural Networks, 23(4):551–559,
2010. doi: 10.1016/j.neunet.2009.12.004. URL http://dx.doi.org/10.1016/
j.neunet.2009.12.004.

P. Sermanet, S. Chintala, and Y. LeCun. Convolutional neural networks applied to house
numbers digit classification. In Proceedings of the 21st International Conference on
Pattern Recognition, ICPR 2012, Tsukuba, Japan, November 11-15, 2012, pages 3288–
3291, 2012. URL http://ieeexplore.ieee.org/document/6460867/.

D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. A. Riedmiller. Deterministic
policy gradient algorithms. In Proceedings of the 31th International Conference on
Machine Learning, ICML 2014, Beijing, China, 21-26 June 2014, pages 387–395, 2014.
URL http://jmlr.org/proceedings/papers/v32/silver14.html.

57

http://papers.nips.cc/paper/6125-improved-techniques-for-training-gans
http://papers.nips.cc/paper/6125-improved-techniques-for-training-gans
http://arxiv.org/abs/1703.03864
http://doi.acm.org/10.1145/2001576.2001692
http://doi.acm.org/10.1145/2001576.2001692
http://jmlr.org/proceedings/papers/v37/schaul15.html
http://jmlr.org/proceedings/papers/v37/schaul15.html
http://arxiv.org/abs/1511.05952
http://jmlr.org/proceedings/papers/v37/schulman15.html
http://jmlr.org/proceedings/papers/v37/schulman15.html
http://jmlr.org/proceedings/papers/v37/schulman15.html
http://jmlr.org/proceedings/papers/v37/schulman15.html
http://arxiv.org/abs/1506.02438
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://dx.doi.org/10.1016/j.neunet.2009.12.004
http://dx.doi.org/10.1016/j.neunet.2009.12.004
http://ieeexplore.ieee.org/document/6460867/
http://jmlr.org/proceedings/papers/v32/silver14.html

58 Bibliography

D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert,
L. Baker, M. Lai, A. Bolton, et al. Mastering the game of go without human knowledge.
Nature, 550(7676):354–359, 2017.

N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout:
a simple way to prevent neural networks from overfitting. Journal of Machine Learning
Research, 15(1):1929–1958, 2014. URL http://dl.acm.org/citation.cfm?id=2670313.

B. C. Stadie, S. Levine, and P. Abbeel. Incentivizing exploration in reinforcement learning
with deep predictive models. arXiv preprint arXiv:1507.00814, 2015. URL http://

arxiv.org/abs/1507.00814.

A. L. Strehl and M. L. Littman. An analysis of model-based interval estimation
for markov decision processes. J. Comput. Syst. Sci., 74(8):1309–1331, 2008. doi:
10.1016/j.jcss.2007.08.009. URL https://doi.org/10.1016/j.jcss.2007.08.009.

Y. Sun, D. Wierstra, T. Schaul, and J. Schmidhuber. Stochastic search using the natural
gradient. In Proceedings of the 26th Annual International Conference on Machine Learn-
ing, ICML 2009, Montreal, Quebec, Canada, June 14-18, 2009, pages 1161–1168, 2009a.
doi: 10.1145/1553374.1553522. URL http://doi.acm.org/10.1145/1553374.1553522.

Y. Sun, D. Wierstra, T. Schaul, and J. Schmidhuber. Efficient natural evolution strate-
gies. In Genetic and Evolutionary Computation Conference, GECCO 2009, Pro-
ceedings, Montreal, Québec, Canada, July 8-12, 2009, pages 539–546, 2009b. doi:
10.1145/1569901.1569976. URL http://doi.acm.org/10.1145/1569901.1569976.

I. Sutskever, J. Martens, G. E. Dahl, and G. E. Hinton. On the importance of initialization
and momentum in deep learning. In Proceedings of the 30th International Conference on
Machine Learning, ICML 2013, Atlanta, GA, USA, 16-21 June 2013, pages 1139–1147,
2013. URL http://jmlr.org/proceedings/papers/v28/sutskever13.html.

I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural net-
works. In Advances in Neural Information Processing Systems 27: Annual Conference on
Neural Information Processing Systems 2014, December 8-13 2014, Montreal, Quebec,
Canada, pages 3104–3112, 2014. URL http://papers.nips.cc/paper/5346-sequence-
to-sequence-learning-with-neural-networks.

R. S. Sutton and A. G. Barto. Introduction to reinforcement learning, volume 135. MIT
Press Cambridge, Cambridge, MA, USA, 1998. ISBN 9780262193986.

C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi. Inception-v4, inception-resnet and
the impact of residual connections on learning. In Proceedings of the Thirty-First AAAI
Conference on Artificial Intelligence, February 4-9, 2017, San Francisco, California,
USA., pages 4278–4284, 2017. URL http://aaai.org/ocs/index.php/AAAI/AAAI17/
paper/view/14806.

H. Tang, R. Houthooft, D. Foote, A. Stooke, X. Chen, Y. Duan, J. Schulman, F. D. Turck,
and P. Abbeel. #exploration: A study of count-based exploration for deep reinforcement
learning. CoRR, abs/1611.04717, 2016. URL http://arxiv.org/abs/1611.04717.

W. R. Thompson. On the likelihood that one unknown probability exceeds another in
view of the evidence of two samples. Biometrika, 25(3/4):285–294, 1933.

S. B. Thrun. Efficient exploration in reinforcement learning. Technical report, Pittsburgh,
PA, USA, 1992.

J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel. Domain random-
ization for transferring deep neural networks from simulation to the real world. CoRR,
abs/1703.06907, 2017. URL http://arxiv.org/abs/1703.06907.

58

http://dl.acm.org/citation.cfm?id=2670313
http://arxiv.org/abs/1507.00814
http://arxiv.org/abs/1507.00814
https://doi.org/10.1016/j.jcss.2007.08.009
http://doi.acm.org/10.1145/1553374.1553522
http://doi.acm.org/10.1145/1569901.1569976
http://jmlr.org/proceedings/papers/v28/sutskever13.html
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14806
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14806
http://arxiv.org/abs/1611.04717
http://arxiv.org/abs/1703.06907

Bibliography 59

E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS
2012, Vilamoura, Algarve, Portugal, October 7-12, 2012, pages 5026–5033, 2012. doi:
10.1109/IROS.2012.6386109. URL http://dx.doi.org/10.1109/IROS.2012.6386109.

G. E. Uhlenbeck and L. S. Ornstein. On the theory of the brownian motion. Phys. Rev.,
36:823–841, Sep 1930. doi: 10.1103/PhysRev.36.823. URL https://link.aps.org/doi/
10.1103/PhysRev.36.823.

A. van den Oord, N. Kalchbrenner, L. Espeholt, K. Kavukcuoglu, O. Vinyals, and
A. Graves. Conditional image generation with pixelcnn decoders. In Advances in
Neural Information Processing Systems 29: Annual Conference on Neural Information
Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, pages 4790–4798,
2016. URL http://papers.nips.cc/paper/6527-conditional-image-generation-
with-pixelcnn-decoders.

H. van Hasselt. Double q-learning. In Advances in Neural Information Processing Systems
23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceed-
ings of a meeting held 6-9 December 2010, Vancouver, British Columbia, Canada., pages
2613–2621, 2010. URL http://papers.nips.cc/paper/3964-double-q-learning.

H. van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with double q-
learning. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence,
February 12-17, 2016, Phoenix, Arizona, USA., pages 2094–2100, 2016. URL http:

//www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12389.

Z. Wang, T. Schaul, M. Hessel, H. van Hasselt, M. Lanctot, and N. de Freitas. Dueling
network architectures for deep reinforcement learning. In Proceedings of the 33nd Inter-
national Conference on Machine Learning, ICML 2016, New York City, NY, USA, June
19-24, 2016, pages 1995–2003, 2016. URL http://jmlr.org/proceedings/papers/
v48/wangf16.html.

D. Wierstra, T. Schaul, T. Glasmachers, Y. Sun, J. Peters, and J. Schmidhuber. Natural
evolution strategies. Journal of Machine Learning Research, 15(1):949–980, 2014. URL
http://dl.acm.org/citation.cfm?id=2638566.

R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine Learning, 8:229–256, 1992. doi: 10.1007/BF00992696. URL
http://dx.doi.org/10.1007/BF00992696.

59

http://dx.doi.org/10.1109/IROS.2012.6386109
https://link.aps.org/doi/10.1103/PhysRev.36.823
https://link.aps.org/doi/10.1103/PhysRev.36.823
http://papers.nips.cc/paper/6527-conditional-image-generation-with-pixelcnn-decoders
http://papers.nips.cc/paper/6527-conditional-image-generation-with-pixelcnn-decoders
http://papers.nips.cc/paper/3964-double-q-learning
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12389
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12389
http://jmlr.org/proceedings/papers/v48/wangf16.html
http://jmlr.org/proceedings/papers/v48/wangf16.html
http://dl.acm.org/citation.cfm?id=2638566
http://dx.doi.org/10.1007/BF00992696

	Contents
	1 Introduction
	2 Background
	2.1 Reinforcement Learning
	2.2 Deep Learning
	2.3 Deep Reinforcement Learning
	2.3.1 Deep Q-Networks (DQN)
	2.3.2 Bootstrapped DQN
	2.3.3 Deep Deterministic Policy Gradient (DDPG)
	2.3.4 Hindsight Experience Replay (HER)

	3 Related Work
	3.1 Overview
	3.2 Near-Optimal Reinforcement Learning
	3.3 Exploration in Deep Reinforcement Learning
	3.4 Parameter Perturbations

	4 Parameter Space Noise for Exploration
	4.1 Background and Formulation
	4.2 Perturbing Deep Neural Networks
	4.3 Adaptive Scaling
	4.3.1 A Distance Measure for DQN
	4.3.2 A Distance Measure for DDPG

	5 Experiments
	5.1 A First Toy Problem
	5.1.1 Experimental Setup
	5.1.2 Results

	5.2 Arcade Learning Environment Experiments
	5.2.1 Environment
	5.2.2 Experimental Setup
	5.2.3 Results

	5.3 Continuous Control Experiments
	5.3.1 Environments
	5.3.1.1 OpenAI Gym Continuous Control
	5.3.1.2 Continuous Control with Sparse Rewards

	5.3.2 Experimental Setup
	5.3.3 Results
	5.3.3.1 OpenAI Gym Continuous Control
	5.3.3.2 Continuous Control with Sparse Rewards

	5.4 Robot Manipulation Experiments
	5.4.1 Environments
	5.4.1.1 Experimental Setup

	5.4.2 Results

	6 Conclusion
	6.1 Summary
	6.2 Future Work

