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Abstract:

Human motion plays an important role in many fields. Large databases exist that store and make available
recordings of human motions. However, annotating each motion with multiple labels is a cumbersome
and error-prone process. This Bachelor’s thesis presents different approaches to solve the multi-label
classification problem using Hidden Markov Models (HMMs). First, different features that can be di-
rectly obtained from the raw data are introduced. Next, additional features are derived to improve clas-
sification performance. These features are then used to perform the multi-label classification using two
different approaches. The first approach simply transforms the multi-label problem into a multi-class
problem. The second, novel approach solves the same problem without the need to construct a transfor-
mation by predicting the labels directly from the likelihood scores. The second approach scales linearly
with the number of labels whereas the first approach is subject to combinatorial explosion. All aspects
of the classification process are evaluated on a data set that consists of 454 motions. System 1 achieves
an accuracy of 98.02% and system 2 an accuracy of 93.39% on the test set.





Kurzzusammenfassung:

Diese Bachelorarbeit befasst sich mit der Klassifikation menschlicher Ganzkörperbewegung mittels Hid-
den Markov Modellen (HMMs). Die menschlichen Bewegungen wurden mittels eines optisches Motion-
Capture-Systems mit passiven Markern aufgenommen. Im Laufe der Arbeit werden zunächst Merk-
male (features) erläutert, die die so aufgenommenen menschlichen Ganzkörperbewegungen beschrei-
ben. Weiterhin wurden neue Merkmale aus den vorhandenen Rohdaten abgeleitet. Ein weiterer Schwer-
punkt der Arbeit findet sich in der Diskussion von verschiedenen Ansätzen zur Lösung des Multi-Label-
Klassifikationsproblems, also der Zuweisung von mehreren Klassen auf eine Bewegung. Hierbei wurden
zwei grundsätzliche Ansätze erarbeitet: Beim ersten Ansatz wird das Multi-Label-Problem zu einem
Multi-Class-Problem transformiert, welches sich dann einfach lösen lässt. Der zweite Ansatz beschäftigt
sich mit Möglichkeiten, das Multi-Label-Problem ohne vorhergehende Transformation zu lösen, indem
die Bewertungen einer unbekannten Bewegung durch die HMMs zu einer Gesamtvorhersage zusammen-
gesetzt werden. Alle Aspekte des Klassifikators wurden anschließend auf einem aus 454 Bewegungen
bestehenden Datensatz evaluiert. Hierbei wurden verschiedene Parameter und Konfigurationen vergli-
chen. Weiterhin fand ein Vergleich zwischen HMMs und Factorial Hidden Markov Modellen (FHMMs)
statt. Die zwei zuvor genannten Ansätze wurden in zwei verschiedenen Systemen realisiert und quanti-
tativ miteinander verglichen. Hierbei erkannte das erste System 98,02% und das zweite System 93,39%
der menschlichen Bewegungen auf dem Testdatensatz korrekt.





Contents

1 Introduction 1

2 Related Work 3

3 Basics 5

3.1 Motion Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Master Motor Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 KIT Whole-Body Human Motion Database . . . . . . . . . . . . . . . . . . . . . . . . 7
3.4 Hidden Markov Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.5 Factorial Hidden Markov Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Features 13

4.1 Marker Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Joint Angle Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3 Derived Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.4 Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.5 Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 Classification 21

5.1 Motion Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.1.1 Emission Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.1.2 Topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.1.3 Parameter Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.1.4 Training and Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.1.5 Extension to Factorial Hidden Markov Models . . . . . . . . . . . . . . . . . . 23

5.2 Single-Label Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.3 Multi-Label Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.3.1 Power Set Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.3.2 Binary Relevance Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.3.3 Modified Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6 Evaluation 29

6.1 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.1.1 dataset Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.1.2 hmm Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.1.3 misc Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.3 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.4 Hidden Markov Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.4.1 Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.4.2 Parameter Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.4.3 Factorial Hidden Markov Models . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.5 Decision Makers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.5.1 Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.5.2 Support Vector Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.5.3 Decision Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46



6.5.4 Random Forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.6 Classification Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.6.1 Power Set System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.6.2 Multi-Label System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.6.3 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7 Conclusion 55



Page 1

1 Introduction

Human whole-body motion plays an important role in many fields, including sports, medicine, entertain-
ment, computer graphics and robotics. Motion capture technologies are readily available to relatively
easily record vast amounts of data. Today, whole characters in movies and video games are created using
computer-generated imagery (CGI) and the recorded movements of an actor. An impressive example
is the completely computer-generated character Gollum from the Lord of the Rings movies. In sports
and medicine, motion data can be used for gait analysis of humans. For example, stroke patients have
been recorded using motion capture techniques to analyze their disease-induced walking disorders. The
insights from this analysis can be used to better understand the symptoms of the patient and potentially
allows the development of new rehabilitation therapies. Gait analysis is also used in professional sports
to analyze the performance of athletes and to optimize their training. In humanoid robotics, human
whole-body motion plays an important role in the construction and control of biped humanoid robots.
The use of motion in the field of robotics will be discussed in-depth in the Related Works chapter.

Given the interest in human motion and the availability of the recording equipment, a growing number
of motion data is recorded. A number of human whole-body motion databases exist today to make
this data available to artists, physicians and researchers. Retrieval of information from these databases is
often realized through so-called tags which are associated with a motion record. A motion can potentially
have many tags that describe it. For example, a motion of a human playing tennis might be labeled with
the tags tennis, forehand and right hand. These tags can be used to query the database for motion data of
interest. However, annotating a motion with these tags is usually done by hand which is both an error-
prone and slow process. The results are highly subjective since different annotators will use different
tags to label the same data. This may be because different annotators have a different understanding of
a tag or simply because they are not aware of the full set of available tags. Additionally, labeling every
motion by hand becomes infeasible as more data is recorded.

Autonomous motion recognition and classification can be used to automatically label new motions
without human involvement. This approach solves the two main problems of labeling by hand. Firstly,
the classification algorithm produces objective and reproducible results. Secondly, the system can be
scaled to handle more and more data by increasing the available computational resources. The objective
of this thesis is to develop a system that can be used to perform such autonomous classification of human
whole-body motion.

This thesis is organized as follows: Chapter 2 provides a brief overview of the relevant literature and
important authors in the field. Some fundamental concepts are introduced in chapter 3 which forms the
basis for all following chapters. This includes an in-depth discussion of motion capture systems and ways
to represent this recorded data. The KIT Whole-Body Human Motion Database is introduced since the
system developed during this thesis will be used to classify motions stored in this database. Additionally,
the foundations of Hidden Markov Models (HMMs) and Factorial Hidden Markov Models (FHMMs)
are discussed since they play a key role for the devised classifier. Chapter 4 discusses possible features
to discriminate motions. The discussion includes different representations of motion data, the extraction
of additional features from the data and important preprocessing steps before the features can be used
in a classifier. Chapter 5 is concerned with the problem of classification. In the chapter the previously
discussed basics of Hidden Markov Models are extended so that they can be used for motion recognition.
The remainder of the chapter is devoted to the use of multiple HMMs for the classification of human
motion. The theoretical concepts discussed in the previous chapters are then evaluated in chapter 6.
Besides a description of the used tools and dataset, the evaluation includes the selection of features, a
comparison between different HMM configurations as well as the evaluation of different classification
approaches. Finally, the best results from each area are used to perform an end-to-end evaluation of the
entire system. Chapter 7 summarizes the work and describes possible improvements for future work.

Classification of Human Whole-Body Motion using Hidden Markov Models
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2 Related Work

In robotics, a promising idea is to use human motion as an intuitive way to instruct and program machines.
This approach is commonly referred to as Programming by Demonstration (PbD) [DRE+00, BCDS08].
In PbD, a human instructor teaches a machine how to complete a given task by performing the necessary
steps themselves. The machine then observes the instructor and attempts to also complete the task by
imitating what it perceives. Human motion can also be used to gain a better understanding of how
different parts of the human body work together to complete a task or goal. For example, observing how
a human reacts to counter balance perturbations can potentially be used to transfer this knowledge to
biped humanoid robots [MBJA15, BPPŠ14]. Since motion plays a key role in humanoid robotics most
of the hereafter mentioned literature has a background in this area of research.

Different approaches exist for representing motions. Ogata et al. [OST05] used Recurrent Neural

Networks (RNNs) for interactive learning. In their work, RNNs were used in a cooperative navigation
task with a humanoid robot and a human partner. Taylor et al. [THR06, TH09] proposed Conditional

Restricted Boltzmann Machines (CRBMs) to learn from and then generate human whole-body motion.
The proposed model is capable of generating continuous motion sequences (e.g. walking) and also
allows to smoothly transition between them by adding higher-order layers to the model. Nonlinear

Oscillators were used by Nakanishi et al. [NME+04] in a framework for learning biped locomotion.
Breazeal et al. [BBG+05] represented motion as a path through a directed weighted graph where each
node represents a pose. The edges of the graph define transitions between poses that are physically
possible and safe. Calinon et al. [CGB07] used a Mixture Model of Gaussian and Bernoulli distributions

(GMM/BMM) to encode motion data. Yamane et al. [YYN09] represented continuous motions in binary

trees which can be used for motion recognition and generation. Lastly, Hidden Markov Models (HMMs)
have been a popular choice to represent human whole-body motion. Since this work is concerned with
Hidden Markov Models, the following paragraphs review some works in this domain in greater detail.

Takano at al. [TYS+06] developed a system for recognizing and generating human motion for prim-
itive nonverbal communication. Their approach uses a hierarchy of Hidden Markov Models for human
whole-body motion recognition and motion generation. The lower layer represents motion primitives,
also referred to as proto symbols, whereas the upper layer models the transitions between the motion
primitives and therefore represents higher-level interactions. The lower layer of the system was trained
on joint angle data recorded with an optical motion capture system. Multi-dimensional scaling was used
to construct a multi-dimensional space of proto symbols (the proto symbol space) on which the Hid-
den Markov Model in the upper layer was trained. The authors evaluated their approach by recording a
kickboxing match between two humans. One of the human subjects was then replaced with a humanoid
robot. The model trained on the recorded data was used by the robot to generate and perform motions in
response to the actions of its human counterpart.

Kulić et al. [KTN07b, KTN07a, KTN08] proposed a system for learning, clustering and hierarchy for-
mation of human whole-body motion in humanoid robots. The authors used Hidden Markov Models and
Factorial Hidden Markov Models to represent motion as a sequence of motion primitives. Additionally,
the system described by the authors is capable of on-line learning. This was achieved by two essential
properties of the devised system: sequential training of FHMMs and incremental hierarchical formation
of the motion primitives by clustering. The sequential training algorithm allowed Kulić et al. to initially
encode an observed motion into a simple Hidden Markov Model. As more and more data is observed,
additional chains can be added and trained on-line, transforming the HMM into an FHMM. Secondly,
newly observed motions are dynamically organized into an hierarchical tree structure, the motion symbol

tree. This can be done efficiently by performing a tree search and placing the new motion into the node
that is most similar. Local clustering is performed to split groups into new subgroups as new knowledge
is added. As a result, specialized motions are placed at the leaves of the tree, whereas more generalized
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motions can be found near the root. Both properties allow a humanoid robot to incrementally and effi-
ciently build, organize and access knowledge during operation. The authors evaluated their work with a
database of recorded human whole-body motion data. The data set contained 28 motions for walking,
15 cheering motions, 7 dancing motions, 19 kicking motions, 14 punching motions, 13 sumo leg raise
motions, 13 squatting motions, 13 throwing motions, and 15 bowing motions. Each motion was repre-
sented in a humanoid model with 20 degrees of freedom. The results indicated that Factorial Hidden
Markov Models outperform single-chain Hidden Markov Models in their discriminative and generative
properties.

The work by Kulić et al. was extended in [TIKN10] and [KOL+11]. The authors used the motion
symbol tree to perform efficient classification. This was achieved by traversing the tree from the root
and only recursively considering the subtree with the highest likelihood. As soon as a leave node is
reached, the classification is complete. The approach greatly decreased the computational cost since
fewer comparisons are required in order to classify an unknown motion. The authors further introduced
the concept of a motion symbol graph. This directed graph allowed the authors to model likely transitions
between motion symbols when observing continuous motion. The motion symbol graph was used to
predict motion patterns and to generate motions in humanoid robots that consists of sequences of motion
primitives.

In [THN15, TN15a, TN15b], Takano et al. proposed a system for mapping between motion symbols
and word labels. Motions were encoded into HMMs and the distances between all models was calculated.
Like in the earlier work of Takano, the distance measures was used to construct a multi-dimensional
space, the motion symbol space. Multiple word labels associated with the motion primitive were encoded
into a binary vector, which can be seen as a point in word label space. Finally, a linear mapping between
the motion symbol space and the word label space was learned using Canonical Correlation Analysis
(CCA). CCA attempts to find a mapping in such a way that the correlation of the positions of motion
symbols and word labels is maximized. An advantage of this model is that it can be used to map from
motion symbol to word label and vice versa. This means that the system is both capable of motion
classification given an unknown motion and motion retrieval given a query of word labels. In the latter
case, since motion symbol space and word label space are metric spaces, it is also possible to calculate
the distance between a word label query and a motion symbol, making it easy to quantify the similarity.

An interesting extension to Hidden Markov Models was proposed in [WB99]. Wilson et al. used
Parametric Hidden Markov Models (PHMMs) to recognize parameterized gestures. An example of such
a gesture is the movement of the hands that accompanies the speech “I saw a robot this big!”. Here,
this is a parameter of the gesture, namely the scalar size of the observed robot. The authors showed
that traditional HMM-based recognition cannot adequately model this spatial variance. Furthermore,
HMMs do not allow to estimate the parameter (e.g. the size of the robot) from an unknown gesture. The
PHMM devised by the authors can solve both problems efficiently. It works by weighting a parameter
vector and adding it to the mean of the emission distribution of each hidden state. A modified version of
the Baum-Welch algorithm was used to estimate the weights of the parameter vector. Recognition with
PHMMs is complicated by the fact that the parameter vector is unknown. This was solved by estimating
the parameter vector (using an EM algorithm) for the observed sequence and each PHMM. The PHMM
with the highest likelihood was then selected. Furthermore, the authors extended PHMMs to a non-linear
mapping from parameter vector to the means of the emission distributions. In this case, gradient ascent
techniques were used to estimate the necessary parameters.

Herzog et al. [HUK08] used a variation of PHMMs to recognize and imitate motions in humanoid
robots. Their approach differed from the model proposed by Wilson et al. The basic idea proposed by the
authors is to use linear interpolation of HMMs that were trained on known parameters to generate a new
HMM for new parameters. In their work the authors further discussed how a humanoid robot can generate
motions from such a model. The authors evaluated their approach on pointing and reaching motions and
were able to show that, in those cases, PHMMs outperform traditional HMMs in classification.

Krüger et al. [KHB+10] used PHMMs for action recognition. Their work builds on the idea that an
action can be represented by a sequence of action primitives. The authors proposed a system that used
unsupervised segmentation to discover the action primitives. PHMMs were then used to encode and
recognize them, as well as synthesis motions with a desired effect (e.g. grabbing an object).

Classification of Human Whole-Body Motion using Hidden Markov Models
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3 Basics

Classification of human whole-body motion first and foremost requires motion data. This chapter there-
fore starts with a brief discussion of motion capture (section 3.1) and the Master Motor Map as a frame-
work for representing motion (section 3.2). Section 3.3 gives an overview of the KIT Whole-Body
Human Motion Database, which plays an important role in this work since it stores all motion data and
also provides structures for labeling motions. Hidden Markov Models are introduced in section 3.4,
which are used to learn and recognize motions in this work. Lastly, an extension of HMMs, Factorial
Hidden Markov Models, are discussed (section 3.5).

3.1 Motion Capture

For recording motion data, the VICON MX motion capture system can be used. The system uses passive
optical markers that can be attached to both humans and objects. Cameras that are positioned at multiple
locations around the scene record the position of the markers within line of sight. To do so, each camera
features a ring of LEDs that surrounds its lens. The LEDs emit light in the infrared spectrum, which
is then reflected by the markers. Each camera records this reflected light and (depending on the mode
of operation) reports the 2D coordinates of the markers. The final 3D coordinates for each marker are
calculated by triangulation using the data from each camera [vic].

Figure 3.1: Marker placement on the human body [MTD+15].

The motions are recorded by eight stationary and two portable VICON T10 cameras. Each camera
records with a sampling rate of 100 Hz. A total of 56 markers are placed onto the human as depicted in
figure 3.1.

All recorded motion data is stored in the C3D format. The C3D format is a binary file format under
public domain and is considered an industry standard. Besides storing marker coordinates in 3D space, it

Classification of Human Whole-Body Motion using Hidden Markov Models
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also allows to store information about the human (e.g. body size and weight), the experiment setup (e.g.
marker positions) as well as additional data (e.g. data from additional sensors like force sensors) [c3d].

3.2 Master Motor Map

Master Motor Map (MMM) [TUM+14, AAD07] is a framework for representation, mapping and repro-
duction of human motions on humanoid robots. The fundamental goal of MMM is to map and unify
different motions performed by different humans and recorded with different motion capture systems
to the MMM reference model. Motions represented under this reference model can then be converted
to different outputs, e.g. to map a human motion onto a humanoid robot like ARMAR-III [ARA+06].
The architecture of the MMM framework is depicted in figure 3.2. The framework includes different
command-line and graphical user interface (GUI) tools and is open source1.

Robot

Editor
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Reference 
Model

Motion Capturen

Converter n
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...
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Converter
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Robot A

...

Converter
MMM ‐> MA

Motion 
Analysis

Figure 3.2: Architecture of the Master Motor Map framework [TUM+14].

At the core of the framework is the MMM reference model. It consists of a model of the human body
with a normalized height and weight, as well as kinematic and dynamic properties. These properties
are based on the research conducted by Winter et al. [Win79, Win09] and Buchholz et al. [BAG92].
The kinematics of the MMM model consist of 104 degrees of freedom (DoF): 6 DoF cover the model
pose, 23 DoF are assigned to each hand, and the remaining 52 DoF are distributed on arms, legs, head,
eyes and body. The reference coordinate system in every joint is chosen in such a way that the x-axis
points to the right of the model, the y-axis to the front and the z-axis upwards. If a joint has multiple
DoF it is split into multiple joints with a single DoF each. The MMM reference model also specifies
upper and lower limits for each joint. It is important to note that not all joints in the model must be
used to represent motion. For example, the movement of individual fingers might not be of interest when
recording a whole-body walking motion. In this case, the unspecified joints will simply remain in their
initial positions [TUM+14].

The command-line tool MMMConverter can be used to convert data recorded with a motion capture
system to the MMM reference model, i.e. reconstruct joint angles of the MMM model from motion
data. This is accomplished by placing virtual markers onto the reference model and finding a mapping
from the position of the physical markers (as recorded by the motion capture system) to virtual markers.
The optimization problem can be solved efficiently by minimizing the distance between the position of

1http://h2t.anthropomatik.kit.edu/752.php
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physical and virtual markers for each frame. Details on this mapping procedure are given in [TUM+14].
The converted motion is then stored in a XML-based file format. Such a XML file can contain multiple
motions, which is useful for scenes where a human interacts with objects or scenes with multiple humans
in them. Each motion is referenced by a unique name and consists of two parts: a preamble and the
actual motion data. The preamble specifies a model (e.g. the MMM reference model or a model of an
object) and can contain additional information about the human or object (e.g. body size and weight).
The motion data is encoded in a list of frames. Each frame has a relative time step in seconds (the first
frame starts at time step t = 0) and contains values for all properties that are specified by the model.
For example, each frame of human motion under the MMM reference model contains the root position
(x, y, z coordinates), the root rotation (roll, pitch, yaw angles) and a list of joint angles. Additionally,
the velocity and acceleration information for each of the above properties as well as dynamic data (e.g.
center of mass, angular momentum) can be stored for each frame [mmm].

The GUI tool MMMViewer can be used to visualize motions. The whole motion can be played back
or each frame can be inspected individually. The camera can be moved freely to view the motion from
different angles. Additionally, the joint angles of the currently visible frame are displayed. Figure 3.3
shows the tool during a visualization.

Figure 3.3: Visualization of a walking motion in MMMViewer.

3.3 KIT Whole-Body Human Motion Database

The KIT Whole-Body Human Motion Database2 contains motion data of both humans and objects that
have been recorded using a marker-based approach as described in section 3.1. Each entry in the database
has a unique ID, belongs to a project, and references the subjects and objects that participated in the
recording. When recording motions, multiple trials are usually performed. For each trial, the raw motion
data is stored in the C3D format (see section 3.1) and uploaded. Recorded data of additional sensors (e.g.
force measurements for push recovery) as well as video footage can be uploaded as well. The database
system automatically converts the C3D files to a subject-independent representation under the MMM
model (see section 3.2) and, optionally, estimates dynamic properties like the center of mass. Log files
grant insight into the conversion process. Furthermore, the database is capable of storing data related
to subjects and objects. Size, weight, gender and other anthropometric measurements can be stored in

2https://motion-database.humanoids.kit.edu
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the record for each subject. For objects, a 3D model of the object alongside a custom description can be
saved [MTD+15].
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Figure 3.4: The Motion Description Tree (excerpt) [MTD+15].

Each motion is classified within the Motion Description Tree. The tree consists of a hierarchical dec-
laration of tags describing motion types (e.g. walk, kick, run) and additional tags for other properties like
the direction of a movement (e.g. left, right, forward, backward). The tree is organized in such a way that
the parent of a node has a broader semantic meaning than its children. For example, the tags clap and
bow are both child nodes of the tag gesticulation. An excerpt of the Motion Description Tree is depicted
in figure 3.4. An important property of this classification approach is that a motion can be associated
with an arbitrary number of nodes of the Motion Description Tree. For example, a motion of a human
that trips while walking to the left with high speed can be categorized using the following tags: (1) loco-

motion → bipedal → walk, (2) speed → fast, (3) direction → left, (4) perturbation → result → failing,
and (5) perturbation → source → passive. The whole tree is managed by the KIT Whole-Body Human
Motion Database and can be extended if necessary [MTD+15].

The database can be accessed through a web interface or an application programming interface (API).
The web interface and the API are available publicly. For each motion the raw files as well as the
processed files can be downloaded. For convenience, bulk download options are available. The web
interface is also used to modify existing or upload new motions. These operations are restricted to
registered accounts. The API allows direct access to the database. This allows the integration of the
database into existing tools. The API is build on top of the Internet Communications Engine (Ice) [ice].
Ice is a remote procedure call (RPC) framework and allows for easy integration with a wide variety of
platforms and programming languages [MTD+15].

At the time of this writing, the database contains 4457 motions performed by 49 different subjects.
All motions in total have a length of approximately 9 hours and 20 minutes, with the average length of a
recording being approximately 7.56 seconds.

3.4 Hidden Markov Models

A Hidden Markov Model (HMM) [EAM08, Rab89] is a statistical model popular for learning sequential
data. This is due to the fact that HMMs have the ability to have some degree of invariance to local warping
(compression and stretching) of the time axis [B+06]. The methods discussed in this section are applica-
ble to all forms of sequential data. However, since this work deals with temporal sequences, this section
and all following chapters use notation and phrases that imply temporal sequences. Concretely, a tempo-
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ral sequence of length T is denoted by o1,o2, . . . ,oT , where each ot is a multi-dimensional observation.
The following discussion of HMMs and the underlaying concepts are based on Bishop et al. [B+06].

ot−1 ot ot+1

Figure 3.5: Graphical representation of a first-order Markov chain. Each observation ot is only dependent
on the previous observation [B+06].

To understand Hidden Markov Models, it is helpful to first consider a simpler Markov model: the
Markov chain. In a Markov chain (of first order), given a sequence o1, . . . ,oT , the conditional probability
of an observation ot (that is the observation at time t) is assumed to be independent of all past (and, of
course, future) observations except for observation ot−1. The conditional distribution in a such a model
is given by

p(ot | o1, . . . ,ot−1) = p(ot | ot−1). (3.1)

Consequently, the joint distribution is given by

p(o1, . . . ,oT ) = p(o1)
T

∏
t=2

p(ot | ot−1). (3.2)

A graphical representation of a first-order Markov chain is depicted in figure 3.5. The assumption that
an observation is only dependent on its previous observation is rather strong. This can be easily seen by
considering an example: If one attempts to predict the weather for the next hour by only considering the
current weather situation instead of using the data of the last 24 hours, the prediction would be severely
limited. The assumption can be relaxed by generalizing the Markov chain to be of M-th order. Here,
each observation in a sequence is dependent on the past M observations. However, in such a model the
number of parameters grows exponentially with M, so that this approach becomes impractical for large
values of M.

zt−1 zt zt+1

ot−1 ot ot+1

Figure 3.6: Graphical representation of a Hidden Markov Model. Each observation ot (in blue) is condi-
tioned on the state of its respective hidden variable zt (in red). The hidden variables form a
first-order Markov chain [B+06].

To solve this problem, hidden (sometimes also referred to as latent) variables are introduced. Con-
cretely, each observation variable ot is conditioned on the state of its hidden variable zt . The hidden
variables form a first-order Markov chain. Such a model is known as a state space model, which is
visualized in figure 3.6. The joint distribution for this model is given by

p(o1, . . . ,oT ,z1, . . . ,zT ) = p(z1)
T

∏
t=2

p(zt | zt−1)
T

∏
t=1

p(ot | zt). (3.3)

An important property of this model is that any pair of observed variables oi and o j are connected via the
hidden variables. It can be shown that the predictive distribution p(ot+1 | o1, . . . ,ot) for observation ot+1

is dependent on all past observations o1, . . . ,ot . This model is therefore not constrained by the strong
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independence assumption of a Markov chain. If the hidden variables in a space state model as described
above are discrete, the Hidden Markov Model is obtained.

Formally, a Hidden Markov Model is defined by the set of parameters that govern the model [B+06,
Rab89]:

• K is the number of the individual hidden states. The appropriate number of states depends on
the problem at hand. The current state at time t is denoted by qt and the set of possible states
is S = {s1, . . . ,sK}. Notice the relationship of K and the hidden variables: Each of the K states
describes a possible value for the hidden variables zt . One way to represent this is through the
1-of-K coding scheme, hence zt ∈ {0,1}K and ‖zt‖1 = 1 for each t. For example, the notation
qt = s2 is equivalent to zt = (0,1,0, . . . ,0).

• A = (ai j) ∈ [0,1]K×K is a matrix that consists of transition probabilities. Concretely, each entry
defines the probability to transition to state s j given the current state si:

ai j = p(qt+1 = s j | qt = si). (3.4)

Since A is a probability distribution, it must hold that ∀ j : ∑k ak j = 1. By setting ai j = 0, it is
possible to “disable” that specific transition from si to s j.

• πππ = (π1, . . . ,πK) ∈ [0,1]K is the initial state distribution where

πi = p(q1 = si). (3.5)

It must hold that ‖πππ‖1 = 1.

• φ describes the parameters of the conditional distributions of the observed variables:

p(ot | zt ,φ). (3.6)

These probabilities are known as emission probabilities and can be given by different distribu-
tions. For example, if the observed values are discrete, a conditional probability table can be used.
For observations with continuous values, a Gaussian distribution is a often a good choice. Other
distributions are possible and picking an appropriate distribution depends on the observations.

Since K is already encoded by the shape of A, an HMM is fully described by the following set of
parameters: θ = {A,πππ,φ}. In this work, an HMM with parameters θ is denoted by λθ .

Three fundamental problems can be identified when working with HMMs: (1) The evaluation prob-

lem, (2) the decoding problem, and (3) the optimization problem. The problems and their description are
all based on the work of Rabiner et al. [Rab89]. The first problem, the evaluation problem, is concerned
with calculating the probability of a given sequence under a given model. Formally, given a sequence
O = (o1, . . . ,oT ), how can p(O | λθ ) be calculated efficiently. This can also be viewed as scoring how
well a model matches the given observations. The forward-backward algorithm [BE+67, BS+68] can
be used to solve this problem (strictly speaking, only the forward pass is necessary to solve this first
problem). The second problem, the decoding problem, is concerned with finding the state sequence of
the hidden variables. Formally, given a sequence O = (o1, . . . ,oT ) and a model λθ , find a sequence
Z = (z1, . . . ,zT ) of hidden states that is optimal. Different criteria of an optimal state sequence exist, e.g.
choosing the states that are individually most likely. The most popular criterion is to find the single best
state sequence. This is equivalent to maximizing p(Z | O,λθ ), which is solved efficiently by the Viterbi

algorithm [Vit67]. The third problem, the optimization problem, is concerned with adjusting the param-
eters of the model. Formally, given a sequence O = (o1, . . . ,oT ), find parameters θ such that p(O | λθ ) is
maximized. Solving this problem corresponds with learning the parameters, that is “training” the model.
The Baum-Welch algorithm [BPSW70] solves this problem efficiently. However, since Baum-Welch is
a specific case of the expectation maximization algorithm (EM algorithm), it does not necessarily find a
global maximum.
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On a final note, another important property of HMMs is that they are generative models. This means
that a model that has been trained on some data can be used to generate new samples. This is especially
interesting for human motions and humanoid robots. Here, a motion can be learned by observation and
later be reproduced in a robot by sampling from the model [TYS+06].

3.5 Factorial Hidden Markov Models

A sever limitation of HMMs is that they cannot represent a lot of information about the history of a
time sequence. Factorial Hidden Markov Models (FHMMs) are a generalization of HMMs and offer a
way to overcome this limitation. For example, representing 30 bit of information about the history re-
quires 230 hidden states in a standard HMM whereas an FHMM can represent the same information with
only 30 binary state variables [GJ97]. The discussion in this section is based on the work of Ghahra-
mani et al. [GJ97].

z
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t−1 z

(1)
t z

(1)
t+1

z
(2)
t−1 z

(2)
t z

(2)
t+1

z
(3)
t−1 z

(3)
t z

(3)
t+1

ot−1 ot ot+1

Figure 3.7: Graphical representation of a Factorial Hidden Markov Model. Each observation ot (in blue)

is conditioned on the state of all its respective hidden variables z
(1)
t (in red), z

(2)
t (in green)

and z
(3)
t (in purple). The hidden variables z

(m)
t form a first-order Markov chain each. [GJ97].

In an FHMM, the current state is generalized by letting the state be represented by a collection of M

state variables:
zt = (z

(1)
t , . . . ,z(M)), (3.7)

where each state variable z
(m)
t can take on K different values. Each state variable is constrained in such

a way that it evolves according to its own dynamics and is therefore uncoupled from the other state
variables:

p(zt | zt−1) =
M

∏
m=1

p(z
(m)
t | z

(m)
t−1). (3.8)

This can be seen as M independent first-order Markov chains that all contribute to the observation. The

distribution of the observed variable ot is conditional on the states of all hidden variables z
(1)
t , . . . ,z

(M)
t for

each time step t. A simple way to represent this dependency for continuous observations is a multivariate

Gaussian. Concretely, given that each z
(m)
t uses the 1-of-K coding scheme as described in section 3.4 and
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that each observation ot ∈ R
D, the conditional distribution is given by

p(ot | zt) = |ΣΣΣ|−
1
2 (2π)−

D
2 exp

(

−
1
2
(ot −µµµ t)

T ΣΣΣ−1(ot −µt)

)

, (3.9)

where

µµµ t =
M

∑
m=1

W(m)z
(m)
t . (3.10)

Here, each W(m) is a D×K matrix that weights the contributions to the mean for each z
(m)
t , ΣΣΣ is the D×D

covariance matrix and |·| denotes the matrix determinant. Also note that the scalar π in equation 3.9 is
not to be confused with the initial probability vector πππ from section 3.4. In words, at each time step, the
state of all chains are weighted, summed and output through an expectation function (here equation 3.9)
to produce the observation [KTN08].

Like an HMM, a Factorial Hidden Markov Model is defined by the set of parameters that govern
the model: θ = {A(1), . . . ,A(M),πππ(1), . . . ,πππ(M),φ}. This is a simple extension of the parameters of
a standard normal HMM: The transition probabilities A(1), . . . ,A(M) ∈ R

K×K and initial probabilities
πππ(1), . . . ,πππ(M) ∈R

K must be given for each of the M Markov chains. φ still defines the necessary param-
eters for the emission probability distribution, which is φ = {W(1), . . . ,W(M),ΣΣΣ} for a Gaussian FHMM
as described above.

A problem with FHMMs is learning their parameters. This is because although at each time step the
hidden variables are marginally independent, they become conditionally dependent given the observation
sequence. This can be easily seen by considering equation 3.9 and 3.10 that makes the mean and therefore
the entire Gaussian a function of all states. As a result, exact inference becomes infeasible. Concretely,
the backward-forward algorithm used in the E step of the Baum-Welch algorithm has time complexity
O(T MKM+1), where T is the length of the sequence, K is the number of states and M is the number of
Markov chains. Note however that the M step for FHMMs is completely tractable and can therefore be
calculated exactly. To work around the infeasibility of inference, several approximations of the E step
have been proposed: Ghahramani et al. devised inference using Gibbs sampling, completely factorized

variational inference and structured variational inference. A fourth approach, the generalized backfitting

algorithm, was described by Jacobs et al. [JJT02].
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4 Features

As already mentioned in section 3.1, motions can be recorded using an optical marker-based motion
capture system. The following section discusses different approaches to represent such motions and
describes possible features that are used to recognize and classify them in later chapters.

4.1 Marker Representation

A natural and obvious way to represent the recorded data is in 3-dimensional Cartesian space. For each
time sample t, the system records the location of each marker n:

r
(n)
t = (x

(n)
t ,y

(n)
t ,z

(n)
t ) ∈ R

3. (4.1)

A complete motion or observation sequence O is then represented by the all marker locations for all
sampled time steps. A way to write this is to “unroll” all marker locations for a given time step t into the
t-th row of an observation matrix:

Ocartesian =













x
(1)
1 y

(1)
1 z

(1)
1 . . . x

(N)
1 y

(N)
1 z

(N)
1

x
(1)
2 y

(1)
2 z

(1)
2 . . . x

(N)
2 y

(N)
2 z

(N)
2

...
...

...
. . .

...
...

...

x
(1)
T y

(1)
T z

(1)
T . . . x

(N)
T y

(N)
T z

(N)
T













∈ R
T×3N , (4.2)

where T is the number of time samples and N is the number of markers. A visualization of a motion and
the respective marker locations is depicted in figure 4.1.

Figure 4.1: Five key frames of a squatting motion with the location of the individual markers visualized.
The subject looks to the left and is depicted from the side.

A problem with this representation is that an absolute coordinate system is used. Consider for example
two running motions. Assume that in the first case the subject moves towards a defined point and in
the second case turns 45 degrees and repeats the motion almost identically. However, since an absolute
coordinate system is used, the values in the observation matrix O will be very different for the two almost
identical motions. The same problem occurs if the start location of two motions is offset. Again, similar
motions will have different marker positions in the observation matrix. In short, the representation in an
absolute Cartesian coordinate system is neither invariant to translation nor rotation. A coordinate system
that is relative to the recorded subject is desirable to allow for robust motion recognition.
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4.2 Joint Angle Representation

The Master Motor Map (MMM, [TUM+14]) framework (see also section 3.2) uses a relative coordinate
system. This is achieved by mapping the position of the physical markers onto virtual markers on a
reference model. To do so, the squared error between the physical and virtual markers is minimized
by varying the pose of the subject (as defined by its position and rotation in space as well as its joint
angles) while maintaining the constraints of the reference model. The optimization problem is solved by
the reimplementation of the Subplex algorithm as provided by the NLOpt library [MBJA15]. Figure 4.2
depicts the kinematics and shows the location and labels of all joints.

Figure 4.2: The kinematics of the MMM reference model [TUM+14].

Some joints have multiple degrees of freedom (DoF). Take, for example, the body lower neck (BLN)
joint that has 3 DoF (to convince yourself that this is indeed the case, nod, shake your head and move your
head from shoulder to shoulder). In robotics, this is usually handled by splitting a joint with multiple
degrees of freedom into multiple joints with a single DoF each. In the case of the exemplary BLN
joint, this means that the joints BLNx, BLNy and BLNz will replace it. After this step, each joint has a
single DoF and can therefore be represented as a scalar value that defines the joint angle in radians. The
complete joint configuration at time step t can therefore be written as

θθθ t = (θ
(1)
t ,θ

(2)
t , . . . ,θ

(N)
t ) ∈ R

N , (4.3)

where N is the number of joints with a single DoF each. Similar to a representation in Cartesian space, a
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complete observation sequence can then be written as:

Ommm =













θ
(1)
1 θ

(2)
1 . . . θ

(N)
1

θ
(1)
2 θ

(2)
2 . . . θ

(N)
2

...
...

. . .
...

θ
(1)
T θ

(2)
T . . . θ

(N)
T













∈ R
T×N , (4.4)

where T denotes the number of time samples.

It is important to stress again that the the joint angle representation is relative to the subject. However,
some important information is lost: the position of the subject in space. To overcome this, the absolute
root position and the root rotation at each time step t are included in the MMM framework as well:

r
(root)
t = (xt ,yt ,zt) ∈ R

3, (4.5)

θθθ
(root)
t = (θ

(roll)
t ,θ

(pitch)
t ,θ

(yaw)
t ) ∈ R

3. (4.6)

However, these properties are once again given in an absolute coordinate system, suffering from the same
problem described above. Luckily, this is resolved easily by an affine transformation of the coordinate
system translating it such that the root position at t = 0 starts at the origin and rotating it such that the
y axis points away from the front of the subject. The following two equations describe the necessary
calculations for each time step t:

∆r
(root)
t = r

(root)
t − r

(root)
0 , (4.7)

r̂
(root)
t = R−1 ∆r

(root)
t . (4.8)

The first equation describes the translation, whereas the second equation describes the rotation. A rotation
matrix for roll, pitch and yaw angles is given in [Cra05]:

R =





cosα cosβ cosα sinβ sinγ − sinα cosγ cosα sinβ cosγ + sinα sinγ
sinα cosβ sinα sinβ sinγ + cosα cosγ sinα sinβ cosγ − cosα sinγ
−sinβ cosβ sinγ cosβ cosγ



 , (4.9)

where α := θ
(yaw)
0 , β := θ

(pitch)
0 and γ := θ

(roll)
0 .

Figure 4.3 plots the root position of two motions where the subject runs forward. The same movements
are depicted once before any normalization has been applied and once after normalization. Notice that
without normalization, the features are neither translation nor rotation invariant. This can be especially
well seen in figure 4.3(a): Although the subject is running only forward, the movement is split between
the x and y components. This is because the subject moves at an approximately 45 degree angle between
the x and y axis of the absolute coordinate system. After normalization (figure 4.3(c)), the movement
direction happens only in the direction of the y axis of the transformed and now relative coordinate
system. Hence rotation and translation invariant features are obtained after normalization.

The root rotation must be normalized as well to make it comparable. Since the rotation is given in
angles, the normalization is straightforward:

θ̂θθ
(root)
t = θθθ

(root)
t −θθθ

(root)
0 . (4.10)

Notice that this work assumes that the roll, pitch and yaw angles are not limited to the interval [−π,π].
If necessary, this is easily achieved by correcting overflows by adding 2π to all following angles (and
similarly subtracting 2π for underflows).

Another interesting usage of the MMM reference model is that it allows normalization of the marker
positions. Recall that the marker positions were previously given in an absolute coordinate system (see
section 4.1). However, since the initial pose of the subject is known in the MMM reference model, this
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(a) The first running motion without normalization.
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(b) The second running motion without normalization.
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(c) The first running motion with normalization.
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(d) The second running motion with normalization.

Figure 4.3: Comparison between the root positions of two different running motions before and after
normalization.

information can be used to normalize the marker positions as well. This is done analogously to the
normalization of the root position for the position of each marker (see equation 4.8).

4.3 Derived Features

Multiple additional features are computed under the MMM reference model. Firstly, an obvious exten-
sion is to calculate the velocities and accelerations of all features that describe positions in Cartesian
coordinate space. Given that the velocity is the first derivative of the position and the acceleration is
the first derivative of the velocity, both properties are easily calculated by approximating the respective
derivatives:

vt =
rt+1 − rt−1

2∆t
and at =

vt+1 −vt−1

2∆t
, (4.11)

where v denotes the velocity, a the acceleration and ∆t is the time difference between two subsequent
samples (which is assumed to be equidistant over all samples). The velocity and acceleration must be
normalized as well. The normalization works similarly to equation 4.8 but normalizes each sample with
the current pose of the respective segment instead of normalizing each sample with the initial root pose.
An interesting modification of the velocities and accelerations is to reduce them to simple scalar values
by using their norm instead, e.g. the Euclidean one.

Secondly, since the MMM reference model provides additional information about the subject, more
advanced features are computed as well. Two interesting dynamic properties are the center of mass
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Figure 4.4: Comparison between the root position (left) and center of mass (right) of the same bowing
motion.

(CoM) and the angular momentum [PE04]. The CoM is conceptually similar to the root position dis-
cussed earlier in the sense that it describes the position of a subject in 3-dimensional Cartesian space.
However, while the root position is always at a fixed point on the reference model, the center of mass
is the barycenter of the subject. More concretely, the center of mass is the average over the CoM po-
sitions of body segments weighted by their respective masses. To clarify this, consider a motion where
the subject performs a deep bow. A bowing motion is interesting in this case since the lower body re-
mains mostly fixed in space while the upper body moves down. Figure 4.4 plots the root position and the
CoM of such a motion. Notice that the z component of the root position remains approximately constant
although the upper body moves down during the bow. The z component of the CoM on the other hand
first decreases while the subject bows down and then increases again as the subject comes back up. Now
consider the y component of the root position: It decreases as the subject bows down since the hip of
the subject moves backwards. Compare this to the y component of the CoM that instead increases as
the subject bows down since that shifts the center of mass forward. Like the root position, the CoM is
given in an absolute coordinate system. The normalization to a coordinate system relative to the subject
is done analogous to the normalization of the root position. The velocity and acceleration of the CoM
are computed as well.

The angular momentum is a physical measure for the rotational configuration of an object or a system
in 3D space. In the MMM framework, the the angular momentum is calculated with respect to the
center of mass at each time step t in all three spatial directions. The whole-body angular momentum is
calculated as follows:

Lt =
M

∑
i=1

(

m(i)(r
(i)
t ×v

(i)
t )+ I

(i)
t ωωω

(i)
t

)

∈ R
3, (4.12)

with
r
(i)
t = r

(CoMi)
t − r

(CoM)
t and v

(i)
t = ṙ

(CoMi)
t − ṙ

(CoM)
t . (4.13)

The first part of the sum considers the angular momenta created by the orbital rotation of each segment

around the whole-body center of mass. For each segment i ∈ {1, . . . ,M}, m(i) describes its mass, r
(i)
t its

position at time step t w.r.t. the CoM and v
(i)
t its velocity at time step t w.r.t. the CoM. The cross product

is denoted as ×. The second part of the sum takes the spin of each segment into account by computing

the product of its inertia tensor I
(i)
t and its angular velocity ωωω

(i)
t . The velocity v

(i)
t and the difference in

CoM r
(i)
t must be normalized as previously described.

Thirdly, the position of body segments are used as features as well. Consider for example a waving
motion. In this case, the positions of the hands are an interesting feature. Similarly, the position of the
feet are interesting for other motions, e.g. a kick. The positions of the extremities must be normalized.
The velocities and accelerations are computed as previously described.
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4.4 Smoothing

The described features can be noisy or contain errors. For example, noise is introduced during the record-
ing process. In addition, approximating the derivative for the computation of velocities and accelerations
can amplify errors and inaccuracies in the recorded data. Smoothing is used to reduce the impact of these
interferences. A signal can be smoothed using a wide variety of different filters. For a more complete
discussion, see [Sim12].

In this work, only a simple filter is briefly discussed: the moving average or sliding window filter. In
such a filter of length W , the mean of the surrounding W data points is used instead of the individual data
point:

x̂t =
1

W +1

W/2

∑
j=−W/2

xt+ j, (4.14)

where xt denotes a (potentially multi-dimensional) data point at time step t and x̂ is the smoothed version
thereof. Including future samples into the average avoids introducing a time delay in the signal. Notice
that averaging over future samples is possible if the smoothing is applied off-line.
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Figure 4.5: The components of a subject’s root acceleration during a running motion before (left) and
after (right) a moving average filter with W = 3 was applied.

Figure 4.5 compares the root acceleration of a subject before and after applying a moving average filter.
Notice that the the original signal is very noisy. The smoothed signal maintains the overall structure of
the signal but reduces the amount of jitter. Smoothing is a useful preprocessing step before feeding the
features into a model.

4.5 Scaling

Feature scaling is another preprocessing step. Take for example the joint angles and the root position
from the previous sections. The joint angles are physically constrained to a very narrow value range,
whereas the root position can potentially grow very large if the subject travels a large distance from the
start position. It should be obvious from this example that features are on very different scales. This
difference in scale becomes a problem if k-means clustering is used to initialize an HMM’s emission
distribution parameters. If the data is on very different scales across dimensions, k-means will not find
clusters that properly fit the data because the same distance measure is minimized across dimensions.
This, in turn, results in bad estimates of the emission distribution parameters which results in vanishing
probabilities and numerical instabilities during inference. To counter this, feature scaling is performed.
A very simple but effective strategy is to scale the features such that each feature’s values are in the same
range, e.g. [−1,1]. This is achieved by applying the following equation to each individual feature x over
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all T time steps:

x̂t = 2 ·

xt − min
i∈{1,...,T}

xi

max
i∈{1,...,T}

xi − min
i∈{1,...,T}

xi

−1. (4.15)

Notice that each feature needs to be scaled over all samples, not per-sample. Furthermore, if feature
scaling is used, the computation of the minimum and maximum are computed on the training data. New
samples (e.g. from the test dataset when evaluating or unknown motions when used productively) are
then simply scaled using the previously computed values. Otherwise the features that were used to train
the model and the features that are used to recognize unknown motions would end up on a different
scales.

Classification of Human Whole-Body Motion using Hidden Markov Models





Page 21

5 Classification

This chapter discusses methods to recognize and classify motions represented by features as described in
the previous chapter. In the first section, the general concepts of Hidden Markov Models introduced in
chapter 3.2 are concretely discussed for the case of motion recognition. In motion recognition, the goal
is to encode a motion into a Hidden Markov Model and compute a measure that describes how likely an
unknown motion is under the model. In the second section, motion recognition is extended to perform
multi-class classification. In contrast to motion recognition, the goal is now to assign an unknown motion
exactly one class out of a (potentially large) set of possible classes. Lastly, methods for performing multi-

label classification are introduced. In contrast to the multi-class classification task, an unknown motion
can have many labels that assign it to multiple classes.

To avoid confusion and to emphasize the distinction between multi-class (where one label assigns each
motion one class) and multi-label (where multiple labels assign each motion multiple classes), multi-class
classification is referred to as single-label classification hereinafter.

5.1 Motion Recognition

Hidden Markov Models are a popular choice for encoding human whole-body motions [TYS+06, KTN07a,
KTN08]. This section describes some properties of HMMs in depth and discusses properties and prob-
lems that are especially relevant when dealing with motions.

5.1.1 Emission Distribution

Recall that the emission distribution models the observed data. Since in this case motions are observed,
and all previously discussed features are continuous, the emission distribution must also be continuous.
Typically, a Gaussian distribution or a mixture model thereof is used to model this case [KTN08]. Since
this work uses a multivariate Gaussian distribution, the following discussion focuses on this distribution.

A multivariate Gaussian or normal distribution is defined by two parameters, its mean vector µµµ ∈ R
D

and its covariance matrix ΣΣΣ ∈ R
D×D, where D is the dimension of the feature vector. The probability

density function (pdf) is then given by

f (x) = |ΣΣΣ|−
1
2 (2π)−

D
2 exp

(

−
1
2
(x−µµµ)T ΣΣΣ−1(x−µµµ)

)

. (5.1)

In an HMM, the emission of each state k is governed by its mean vector µµµk and its covariance matrix
ΣΣΣk. When dealing with motions, the covariance matrices are often constrained to be diagonal to avoid
numerical problems [KTN07a, KTN07b].

5.1.2 Topologies

An important property of a Hidden Markov Models is that it uses hidden states. The transition probabil-
ities between the K states are given by the transition matrix A ∈ [0,1]K×K , while πππ ∈ [0,1]K defines the
start probabilities for each state. By constraining the transition matrix (and as a result the start probabili-
ties), different topologies can be realized. This is easily done by initializing the transition matrix and the
start probabilities with some entries set to zero. During training, all probabilities that were initially set to
zero will remain at zero [Rab89].

If the transition matrix is not constrained, a transition from any given state to every other state can
occur. Such an HMM is usually referred to as fully connected or ergodic. Another popular topology
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Figure 5.1: Illustration of a 4-state ergodic HMM (left) and a 4-state left-to-right HMM with with ∆ = 2
(right) [Rab89].

is the left-to-right topology or Bakis topology [Bak76]. In such a topology, the states are thought to be
aligned sequentially from left to right. At each state, only a transition to a state that is right of the current
state or a self-transition is allowed. The model can thus only be traversed from left to right, hence the
name. In a left-to-right model, the start probabilities are set to πππ = (1,0, . . . ,0) while the transition matrix
takes the following shape:

A =















a1,1 a1,2 . . . a1,(K−1) a1,K

0 a2,2 . . . a2,(K−1) a2,K
...

...
. . .

...
...

0 0 . . . a(K−1),(K−1) a(K−1),K

0 0 . . . 0 aK,K















. (5.2)

The left-to-right constraint can thus be written as:

ai, j = 0, j < i. (5.3)

To avoid skipping too many states while traversing from left to right, an additional constraint is intro-
duced:

ai, j = 0, j > i+∆. (5.4)

∆ limits the maximum number of allowed skips [Rab89]. The left-to-right topology is frequently used
for the recognition of motions [TYS+06, KTN07a]. Both, the ergodic and the left-to-right topology are
visualized in figure 5.1. Note that, due to the variate of possible constraints for the transition matrix,
other topologies are possible which are not discussed here.

5.1.3 Parameter Initialization

An interesting problem that arises is how to initialize the values of the transition matrix and the start
probabilities as well as the means and covariance matrices of the emission distributions. Since the
Baum-Welch algorithm does not necessarily converge to a global maximum but rather to a local one (see
chapter 3.2), a proper initial estimate is important to increase the chances of finding the global maximum
during training. According to [Rab89], the start probabilities and transition matrix can either be initial-
ized by a random (while maintaining the constraint that the respective probabilities must sum to one) or
uniform estimation. Note that the constraints imposed by the topology choice must also be maintained.

The initialization of the mean vectors and covariance matrices of the emission distribution is more
complicated. While a random initialization is possible, it is beneficial to perform an initial estimate of
the underlaying distribution. A popular approach works as follows: The basic idea is to find K clusters
that correspond to the K states of the Hidden Markov Model. The mean µµµk and covariance matrix ΣΣΣk
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for each state k are then estimated over the respective k-th cluster [Rab89]. The necessary clustering can
be performed by hand. Alternatively an unsupervised clustering algorithm like the k-means algorithm

can be used to automatically cluster the data. The k-means algorithm works by alternately assigning data
samples to a cluster given the current parameters and then updating the cluster center means such that the
distance from the previously associated samples is minimized. Lloyd’s algorithm is often used to solve
the clustering problem efficiently [KMN+02].

5.1.4 Training and Recognition

After deciding on the hyperparameters of the model (namely the number of states, the topology and
the initialization method for the parameters of the model), the model can be trained. The training of an
HMM is performed efficiently using the Baum-Welch algorithm [BPSW70]: For each training sequence
O the parameters of the model are updated by first computing the expected likelihood given the current
parameters (expectation step) and then updating the parameters such that the expected quantity from
the expectation step is maximized (maximization step). When performed iteratively, the likelihood is
maximized. The E and M steps are repeated until convergence or until a fixed number of iterations have
been performed.

A common problem when using the Baum-Welch algorithm are numerical instabilities. This is due
to the fact that the probabilities during the forward or backward pass can become extremely small since
they are multiplied at each time step. This becomes worse as the sequences grow longer. Since motions
are usually at least a couple of hundred samples long, this becomes a very real problem when training
HMMs on motions. The problem is mitigated by either using a scaling technique [Rab89] or by adapting
the algorithm such that it uses the logarithm of the probabilities instead [Man06].

Another important property is that the training is unsupervised. This means that no target value like a
label is necessary to learn the parameters of the HMM. However, if multiple HMMs are used to classify
motions into classes, supervised learning becomes important. This will be discussed in the next section.
Finally, HMMs can be trained off-line and on-line. In off-line training, the HMM is trained only once and
the parameters are kept fixed even if previously unseen observation sequences become available. Most
discussion in the literature assume off-line learning, e.g. [Rab89]. In on-line learning on the other hand,
the HMMs are trained incrementally as new data becomes available. Kulić et al. [KOL+11] describe
such a system. This work only considers the off-line approach.

After the model has been trained, recognition is performed by calculating the likelihood under the
model λ for an unknown observation sequence O:

p(O | λ ). (5.5)

This is done efficiently by the forward algorithm [Rab89]. Since the forward algorithm is used during
training as well, the same underflow issues as discussed earlier apply. Notice that the likelihood can
become larger than 1 by definition, hence 0 ≤ p(O | λ )< ∞. Since the likelihood can become both very
small (that is, very close to zero but not negative) and very large, the logarithmic likelihood (loglikeli-

hood) is usually computed and presented. A strongly positive loglikelihood thus indicates a motion that
has been strongly recognized by the model whereas a strongly negative loglikelihood indicates that the
motion has not been recognized by the model at at. Finding such a decision boundary will be discussed
later in this chapter.

5.1.5 Extension to Factorial Hidden Markov Models

The previously discussed concepts apply equally to Factorial Hidden Markov Models. However, three
additional considerations are of interest: the number of Markov chains as an additional hyperparameter,
efficient training of the FHMM and computation of the likelihood under the model.

Firstly, the number of chains is an important hyperparameter since it directly controls the complexity
of time series that an FHMM can represent. However it also comes at the cost of increasing the compu-
tational complexity of both the training and the evaluation given an unknown observation sequence (see
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chapter 3.5). In the literature, few chains are usually used. For example, Kulić et al. [KTN08] use only
two chains in their work. This does not seem like a lot at first. However, assume that an FHMM with
15 states and 2 chains is used. This results in 152 = 225 possible state combinations. Compared to an
HMM with 15 states, even such a relatively small FHMM can already represent vastly more history than
its HMM counterpart.

Exact training of FHMMs is computationally very expensive and can be, depending on the parameters,
even infeasible. Four different approximations were already briefly discussed in chapter 3.5. However,
Kulić et al.[KTN08] proposed a fifth approach that the authors used to train FHMMs on motion data.
The authors further showed that their approach is at least as good as and in most cases even better
than the exact inference algorithm when using it to train FHMMs on motion data. This makes their
approach especially interesting for this work. The algorithm devised by the authors works as follows:
The FHMM is trained sequentially. This means that each FHMM starts with a single chain. Inference
is then performed using the standard Baum-Welch algorithm on the training data. For the next chain m,
the residual error between the previously trained chains and the n-th training sample O(n) ∈ R

T×D is
computed for each time step t ∈ {1, . . . ,T}:

e
(n)
t =

1
W

(

o
(n)
t −

m−1

∑
i=1

Wc
(i)
t

)

∈ R
D, (5.6)

where e
(n)
t is the residual error between the frame at time step t of the n-th training sample and the

summed contributions of the previous m−1 chains. Each chain’s contribution is weighted by W = 1/M,
where M is the number of all chains. Finally, the contribution for each chain m at time step t is computed
as follows:

c
(m)
t =

K

∑
k=1

µµµ
(m)
k γ

(m)
t,k ∈ R

D, (5.7)

where K denotes the number of states, µµµ
(m)
k is the D-dimensional mean vector of the emission distribution

of the already trained chain m in state k. Furthermore, γ
(m)
t,k denotes the probability that state k in chain

m is active at time step t. Algorithm 1 summarizes the described training procedure.

initialize first chain
train first chain on time series O(n) = (o

(n)
t ) using the Baum-Welch algorithm

for m = 2, . . . ,M do
initialize next chain m

compute residual errors e
(n)
1 , . . . ,e

(n)
T

train chain m on time series E(n) = (e
(n)
t ) using the Baum-Welch algorithm

end

Algorithm 1 : The sequential training algorithm for FHMMs in pseudo code [KTN08].

A noteworthy and convenient property of the sequential training algorithm is that it uses procedures
that are already used when training HMMs. More concretely, the training of each chain is done by an

unmodified version of the well-known Baum-Welch algorithm. Computing γ
(m)
t,k for the residual error is

achieved just as easily by using the standard forward-backward algorithm.

Lastly, the likelihoods under the FHMM must be calculated as well. This is done using the exact
algorithm given in [GJ97]. In the more concrete case of the sequential training algorithm, the necessary
means and covariances are computed as follows:

µµµk1,...,kM
=W

M

∑
m=1

µµµ
(m)
km

and ΣΣΣk1,...,kM
=W 2

M

∑
m=1

ΣΣΣ
(m)
km

. (5.8)
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Notice that this must be done for each possible combination of states across all M chains, as indicated
by the index k1, . . . ,kM . Take, for example, an FHMM with 3 states and 2 chains. This would result in
32 = 9 combinations, with the following mean vectors:

µµµ1,1 =W
(

µµµ
(1)
1 +µµµ

(2)
1

)

, µµµ1,2 =W
(

µµµ
(1)
1 +µµµ

(2)
2

)

, µµµ1,3 =W
(

µµµ
(1)
1 +µµµ

(2)
3

)

, (5.9)

µµµ2,1 =W
(

µµµ
(1)
2 +µµµ

(2)
1

)

, µµµ2,2 =W
(

µµµ
(1)
2 +µµµ

(2)
2

)

, µµµ2,3 =W
(

µµµ
(1)
2 +µµµ

(2)
3

)

, (5.10)

µµµ3,1 =W
(

µµµ
(1)
3 +µµµ

(2)
1

)

, µµµ3,2 =W
(

µµµ
(1)
3 +µµµ

(2)
2

)

, µµµ3,3 =W
(

µµµ
(1)
3 +µµµ

(2)
3

)

. (5.11)

The 9 covariance matrices would be calculated analogously. The emission distribution for each state
combination is then given by a multivariate Gaussian distribution with mean µµµk1,...,kM

and covariance
ΣΣΣk1,...,kM

[JJT02, KTN08].

5.2 Single-Label Classification

In the previous chapter motion recognition was discussed. This discussion is now extended to a classi-

fication problem. In a classification problem an unknown observation sequence, in this case a motion,
must be assigned to a finite set of classes L . For example, assume that the set of classes is run, jump

and kick. The goal is then to find the correct label y ∈ L = {run, jump,kick} for an unknown motion O

by making a prediction p. The classification is correct if y = p. Figure 5.2 provides an overview of the
classification process. This process is used throughout this work, not just for single-label classification.

O . . .

λ2

λ1

λM−1

λM

. . .

p(O | λ2)

p(O | λ1)

p(O | λM−1)

p(O | λM)
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n
M
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Figure 5.2: Overview of the classification process. For an unknown observation sequence O (in red),
the likelihood under each HMM (in green) is computed. Each HMM corresponds to a single
class. The likelihoods (in purple) are then fed into a decision maker (in orange) that computes
the prediction (in blue).

If only a single label is assigned to a motion, the classification is straightforward. Instead of using
words, y is encoded by natural numbers where each number corresponds to a class:

y ∈ {1, . . . ,M}, (5.12)

where M is the number of classes that need to be recognized. The mapping between word and class
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can be chosen arbitrarily as long as it is bijective. In the above example, a possible mapping would be
run → 1, jump → 2 and kick → 3.

Additionally, assume that M HMMs have been trained per class: λ1, . . . ,λM . The first HMM was only
trained with motions of class 1, the second one only with motions of class 2 and so on. In contrast to
the learning algorithm described in the previous chapter, the labels of the training data are now used to
select the appropriate HMM during training. While the training of the HMM itself is still unsupervised,
the selection happens in supervised fashion.

After training, the prediction of an unknown motion O must be computed. To do so, the likelihoods of
the motion under each individual HMM are evaluated. The last step is then performed by what this work
refers to as a decision maker. The job of a decision maker is to find a mapping from the likelihoods of
the HMMs to the prediction p. In case of the single-label classification problem, the prediction is done
by a very simple decision maker that chooses the label that corresponds to the HMM with the maximum
likelihood:

p = argmax
m∈{1,...,M}

p(O | λm). (5.13)

5.3 Multi-Label Classification

Let us now extend the classification problem to a problem where multiple labels can be assigned to a
motion. This can be motivated by recalling the Motion Description Tree (see chapter 3.3): A motion
is specified by the leave nodes of the tree, e.g. (1) locomotion → bipedal → walk, (2) speed → fast,
(3) direction → left, (4) perturbation → result → failing, and (5) perturbation → source → passive. It
should be obvious from this example that most motions cannot be adequately described by a single class.
However, if a motion can have multiple labels, the simple classification described by equation 5.13 does
not work anymore since it only computes the single label with the maximum likelihood.

To work around this problem, two different approaches can be identified: problem transformation
using the power set method or the use of more advanced decision makers. In the latter case, the decision
maker needs to truly handle multi-label classification. This can either be done by using the binary

relevance method or algorithm modification [RPHF11].

5.3.1 Power Set Method

A first attempt to solve this problem is to simply treat each possible combination of labels as a single
class. More formally, if L is the set of all labels, compute the power set as the substitute label set:

L̂ = P(L ) = {U | U ⊆ L }\ /0. (5.14)

If each element in L̂ is then mapped to a natural number, the multi-label problem has been transformed
into a single-label problem. This means that equation 5.13 can be used to predict the substitute label
with the maximum likelihood. Since the substitute label represents multiple labels internally, reversing
the transformation after the classification step solves the multi-label problem using the already discussed
approach for single-label classification. In the literature, this idea is usually referred to as the power-set

method [BLSB04, RPHF11].
The power set method, however, has several downsides. Firstly, the number of possible label combi-

nations is 2M −1, where M is the number of classes. Recall that for each class a Hidden Markov Model
must be trained. However, having sufficient training data now becomes a problem. If, for example, 200
walking motions exist but of those 200 motions only a single a has the labels walk and fast whereas
all others have the labels walk and slow, the HMM for the fast walking motion would only be trained
on a single training sample. This is inefficient since the HMM would benefit from the samples of the
similar slow walking motion. Secondly, to perform classification, the likelihood under each model must
be calculated. It can be easily seen that, for the worst case, this requires O(2M) computations of the
loglikelihood for each unknown motion, which makes this approach infeasible for even moderately large
M.
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5.3.2 Binary Relevance Method

Instead of treating all possible combinations of labels as a single label, an approach where a motion can
truly have multiple labels is interesting. One way to achieve this is to encode the label as a binary vector:

y ∈ {0,1}M, (5.15)

where ym is set to 1 if the m-th label is active and set to 0 otherwise. To give an explanatory example,
assume that the classes walk, fast and slow exist. The label of a fast walking motion would then be
encoded as y = (1,1,0) whereas motion where the subject walks slowly would would be encoded as
y = (1,0,1).

The training then works as follows: M HMMs are initialized, one for each class. Given a training
sequence O, use it to train all HMMs which correspond to the set classes in the sequence’s label y. If, for
example, y = (1,0,1), train λ1 and λ3 on the same sequence. An advantage over the previously described
method is that only M instead of 2M − 1 HMMs (worst case) must be kept in memory. Additionally,
the utilization of the available training data is vastly improved. In the above example, the HMM that
corresponds to the walk class now benefits from both, the slow and fast walks. In the previously described
approach, both would only be considered in isolation. However, this can also become a problem if classes
are too generic. Take for example motion of a throw performed with the left hand and a kick with the
left foot. If both would be associated with the same class left, it is unlikely that common patterns can
be learned properly. Instead, hand-left and foot-left can be used to distinguish the two, which is a more
reasonable choice in this case.

However, it is unclear how the decision maker can be realized in this case. The previous approach
where the class with the maximum likelihood was selected cannot be used anymore. One way to per-
form classification in this case is to use some fixed value as the decision boundary. Let x̄m be such a
decision boundary for the m-th label. The multi-label classification is then achieved by computing all
likelihoods of the unknown motion O under each HMM and selecting all that are equal to or greater than
the respective decision boundary:

pm =

{

1, if p(O | λm)≥ x̄m

0, otherwise
m = 1, . . . ,M, (5.16)

where ym denotes the m-th element of the prediction p. This approach is promising, but unfortunately it
all depends on a good choices of x̄m.

Instead of trying to find good values for all x̄m by hand, it would be preferable if the decision boundaries
could be determined automatically. Since the approach described in this work is supervised, the asso-
ciation between the likelihoods and the corresponding class is actually known for the training dataset.
It seems like a good idea to use this knowledge to learn a decision boundary from the training data in-
stead of finding it by hand. This has the advantage that the model easily adapts to the current dataset
at hand without the need to fine-tune the decision boundary manually. The problem can indeed be seen
as binary classification: For each class, the features for the binary classifier are the likelihoods which
should be classified into two half-spaces that correspond to the labels 0 and 1 respectively. Since in this
case, the feature space is 1-dimensional (just a scalar likelihood under one specific model), the hyper-
plane that separates the two half-spaces is a simple point and corresponds to the decision boundary x̄m

described previously. This means that any binary classifier like Logistic Regression [Jor02] or Support

Vector Machines [HDO+98] can be used to learn a mapping from the likelihoods to ym for each class.

Instead of only considering the m-th likelihood, in a slightly more advanced version of this basic
idea the binary classifier considers all likelihoods for its binary decision. This approach is commonly
referred to as the binary relevance method [RPHF11]. More concretely, multi-label motion classification
is realized with this method as follows:
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1. Given the training data O(1), . . . ,O(N) and respective labels y(1), . . . ,y(M), calculate the likelihoods
for each motion under each model:

x(n) = (p(O(n) | λ1), p(O(n) | λ2), . . . , p(O(n) | λM)), n ∈ {1, . . . ,N}. (5.17)

2. Train M binary classifiers. For each classifier, the features are x(1), . . . ,x(N). However, the labels

are varied across classifiers, with the m-th classifier using labels y
(1)
m , . . . ,y

(N)
m .

3. Given an unknown motion O, calculate the likelihoods x under each of the M models analogously
to equation 5.17. Afterwards, perform M predictions using the previously trained classifiers to
obtain the complete multi-label prediction:

p = (h(1)(x), . . . ,h(M)(x)), (5.18)

where h(m)(x) ∈ {0,1} denotes a function that computes the prediction of the m-th classifier.
In this case, the decision maker uses multiple binary classifiers internally to learn a mapping from the

likelihoods of the HMMs to the multi-label prediction using the binary relevance method. It is important
to stress again that the ability to use any binary classifier for multi-label predictions is a big advantage of
this method since a wide and well-understood variety of such classifiers exist.

However, this approach also has a downside: Each class is considered in isolation. This means that
information is lost since the correlation between classes in the label vector y carries information as
well. More concretely, it is likely that certain label combinations correspond to certain patterns in the
likelihoods. Such patterns cannot be detected by the approach described above, since each classifier only
“sees” a single class [RPHF11].

5.3.3 Modified Algorithms

Some learning algorithms have been modified to support multi-label classification “out of the box”. In
such a case, the multi-label classification is straightforward: Similarly to the previous approaches, the
likelihoods under each model are calculated for each of the N training motions and the likelihood vectors
x(1), . . . ,x(N) are obtained (compare equation 5.17). In contrast to the binary relevance method, the
classifier can now be trained on the entire label vector y instead of training individual classifiers on the
individual classes. This potentially allows the learning algorithm to find patterns between the likelihoods
and the classes since the correlation between classes can now also be considered. In this case the decision
maker is thus simply a classifier that is capable of learning multi-label classification.

Multiple algorithms exist that have been adopted to the multi-label problem. Decision Trees have
been extended to work in multi-label classification problems [VSS+08]. With this extension, Random

Forests [Bre01] can also be used to perform multi-label classification since a Random Forest is an en-

semble classifier that uses multiple Decision Trees internally. While this work focuses on the mentioned
algorithms, it should be noted that other algorithms have been modified as well to support multi-label
predictions, e.g. AdaBoost [SS00] or k-Nearest Neighbors [ZZ07].
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6 Evaluation

The evaluation of the previously discussed concepts is challenging. This is due to the fact that a huge
number of system parameters can be identified: A set of features must be selected, the hyperparameters
of the Hidden Markov Models must be chosen, a comparison between FHMMs and HMMs is neces-
sary and a variety of different classifiers that perform the mapping from likelihoods to final labels are
available which also potentially have many hyperparameters that need fine-tuning. It should be clear that
evaluating all those DoFs simultaneously is impossible due to the large number of combinations. Instead,
the problem is split into smaller problems that are evaluated and optimized individually. Only a small
subset of the best parameter choices is then used in the next problem, and so on.

The structure of this chapter is based on this idea: To get started, a brief overview of the tools used
and developed for this work is given. The next section describes the used evaluation dataset. For the first
evaluation step, feature selection is performed to find a “good” subset of the wide variety of available
features (see chapter 4). Next, Hidden Markov Models and their set of hyperparameters are evaluated (see
chapter 5.1). The discussion is continued by a comparison between Hidden Markov Models and Factorial
Hidden Markov Models (see chapter 5.1.5). Different approaches to predict the labels are evaluated (see
chapter 5.3). Finally, an end-to-end evaluation of two classifier systems is conducted using the results
from the previous sections.

6.1 Tools

A toolkit was developed to help to evaluate this work. The toolkit is mostly written in Python with some
modules using C and C++ either for speed or for interoperability. Additionally, the excellent scikit-learn

framework [PVG+11] was used throughout the toolkit. The toolkit is used via multiple command-line
scripts. This allows to easily automate long-running tasks and handles the wide variety of different
actions and parameters efficiently. Areas of responsibility are split into 3 main modules which are each
briefly covered in the remainder of this section.

6.1.1 dataset Module

The dataset module provides classes and functions to load motion from different file formats (MMM
and C3D files). Furthermore, the derived features described in chapter 4.3 can be computed as well.
The functionality of the Simox1 and MMMTools2 libraries are used to aid in the computation of more
advanced features like the angular momentum. SWIG3 is used to bridge between Python and the C++
API of the two mentioned libraries4,5. The module also provides functionality to normalize features to
obtain rotation and translation invariant representations. Features can also be smoothed by applying a
moving average filter and transformed to have similar scales across features. In short, the dataset
module implements everything that was discussed in chapter 4.

Another important responsibility of the dataset module is the handling of datasets. A dataset is
defined by a simple manifest. The manifest is realized as a JSON file that contains an array of folders.
Each folder can be label with multiple classes to perform supervised learning. A dataset can be loaded
from such a JSON manifest file. Multiple file formats (MMM and C3D) can be merged into a combined

1http://simox.sourceforge.net
2https://gitlab.com/mastermotormap/mmmtools
3http://swig.org
4https://gitlab.com/cmandery/pySimox
5https://gitlab.com/cmandery/pyMMM
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dataset. A dataset can be checked for inconsistencies (e.g. missing files), a report can be generated (e.g.
the number of samples and the labels present in the dataset), selected features can be plotted to visualize
the data and the entire dataset can be exported into a single file (different file formats are supported).
Especially the export functionality is important since the computation of the derived features and the
normalization is computationally expensive. All evaluation steps therefore load such an exported dataset
instead of computing the dataset from scratch every time.

Lastly, the dataset module also provides functionality that helps with splitting the dataset into two
separate (and disjunct) datasets: one for training, one for testing. This is done using stratified k-fold

for multi-label data as proposed by Sechidis et al. [STV11]. The basic idea of a k-fold evaluation is to
split the dataset into k disjunct subsets or folds. k rounds can then be performed by using k− 1 folds
for training and the remaining fold for testing. In a stratified k-fold, each fold attempts to have the same
distribution of data across classes as the entire dataset.

6.1.2 hmm Module

The hmm module implements everything necessary to train and evaluate Hidden Markov Models. The
basic HMM functionality is provided by the hmmlearn library6. Other libraries were considered as
well, namely pomegranate7 and GHMM8. However, hmmlearn proved to be the most reliable and fastest
library.

For this evaluation, a fork9 of the hmmlearn library was created and used. It fixes some issues and,
more importantly, implements functionality to use and train Factorial Hidden Markov Models. The im-
plementation allows to compute exact likelihoods as described by Ghahramani et al. [GJ97]. Addition-
ally, it supports the sequential training algorithm developed by Kulić et al. [KTN08] (see chapter 5.1.5)

The module also provides functionality to combine the individual HMMs into an ensemble of HMMs.
It allows training of the individual HMMs on labeled training data as well as computing the loglikeli-
hoods of unknown motions under each model (see chapter 5.2 and 5.3). The training and evaluation of
likelihoods is performed in parallel for each model to maximize performance.

Lastly, the hmm module provides utility functions to compute the initial transition matrix and start
probabilities using different topologies (see chapter 5.1.2). Functions to estimate the initial means and
covariance matrices using different strategies and constraints as described in chapter 5.1.3 are included
as well.

6.1.3 misc Module

The misc module is a collection of smaller components. The most important one are the decision

makers. A decision maker is a classifier that performs the mapping from the likelihoods as calculated by
the HMM ensemble to the binary label vector. As described in chapter 5.3, different approaches exist.
The misc module implements a decision maker that always picks the maximum likelihood (chapter 5.2)
and one that uses a fixed decision boundary (chapter 5.3.2). Additionally, decision makers that use
Logistic Regression and Support Vector Machines are implemented using the binary relevance method
(chapter 5.3.2). Decision Trees and Random Forests are used with adapted learning algorithms to handle
the multi-label problem directly (chapter 5.3.3). The decision makers make especially heavy use of the
scikit-learn framework.

6.2 Dataset

Each motion in the dataset was recorded using the motion capture system described in chapter 3.1. The
raw positions of the motion markers were stored in a C3D file. Each motion was recorded using the KIT

6https://github.com/hmmlearn/hmmlearn
7https://github.com/jmschrei/pomegranate
8http://ghmm.org
9https://github.com/matthiasplappert/hmmlearn
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reference marker set consistent of 56 markers placed at well-defined anatomical locations and a sampling
rate of 100 Hz. The C3D files are converted to the MMM reference model using 40 joints (each with a
single DoF) and a non-linear optimization algorithm (see chapter 3.2). The joint angles as well as the
root position and root rotation were stored in an XML file. The C3D and XML files are used to extract
and compute all features described in chapter 4. For all features, the normalized or unnormalized form
can be used. During normalization, the root rotation of the first frame was constrained such that the roll
and pitch angles were set to zero. This is because a small error in either of the two angles can cause
an improperly rotated coordinate system. The features can also be smoothed using a moving average
filter with W = 3 (compare chapter 4.4). Table 6.1 lists all 29 available features without differentiating
between normalized/unnormalized and smoothed/not smoothed.

Dimension Feature Name Description

40 joint_pos angles of all 40 joints
40 joint_vel velocities of each joint
1 joint_vel_norm Euclidean norm of the joint velocities

40 joint_acc acceleration of each joint
1 joint_acc_norm combined Euclidean norm of the joint accelera-

tions
3 root_pos root position of the subject in Cartesian space
3 root_vel directed root velocity
1 root_vel_norm Euclidean norm of the root velocity
3 root_acc directed root acceleration
1 root_acc_norm Euclidean norm of the directed root acceleration
3 root_rot pitch, roll and yawn angles of the subject’s root
1 root_rot_norm Euclidean norm of the root rotation

12 extremities_pos position of the hands and feet in Cartesian space
12 extremities_vel directed velocities of the hands and feet
4 extremities_vel_norm Euclidean norm of the directed extremity veloci-

ties per hand/foot
12 extremities_acc directed accelerations of the hands and feet
4 extremities_acc_norm Euclidean norm of the directed extremity veloci-

ties per hand/foot
3 com_pos position of the center of mass in Cartesian space
3 com_vel directed velocity of the center of mass
1 com_vel_norm Euclidean norm of the CoM’s velocity
3 com_acc directed acceleration of the center of mass
1 com_acc_norm Euclidean norm of the CoM’s acceleration
3 angular_momentum whole-body angular momentum in x, y and z di-

rection
1 angular_momentum_norm Euclidean norm of the whole-body angular mo-

mentum
168 marker_pos position of all 56 markers in Cartesian space
168 marker_vel directed velocities of all markers

1 marker_vel_norm Euclidean norm of all markers’ velocities
168 marker_acc directed acceleration of all markers

1 marker_acc_norm Euclidean norm of all markers’ accelerations

Table 6.1: List of all 29 available features with a total of 702 dimensions.
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A total of 454 motions were selected from the motion database. 10 different human subjects performed
the motions. Of those 10 subjects, 3 are female and 7 are male. Each motion was performed by a single
human subject. If a motion involves an object (e.g. playing the guitar), the object was not physically
present but instead imagined by the subject. The only exception to this is a set of upwards walking
motions where actual stairs were used since it is quite hard to climb imaginary ones. Each recording in
the dataset contains only a single motion. Additionally, each subject begins the motion in an upward-
standing pose similar to the zero-pose of the MMM model and finishes the motion in the same pose. For
periodic motions such as walking, stirring or dancing, a fixed number of repetitions were selected across
the dataset. The motions in the dataset were manually labeled with 49 different labels. Table 6.2 lists all
labels and the number of samples in the dataset that are assigned to each label. Since motions can have
multiple labels, table 6.3 lists all label combinations that are present in the evaluation dataset.

Motions Attributes

Samples Label Samples Label

180 walk 31 turn-right
35 push-recovery 28 turn-left
41 run 9 speed-fast
28 kick 10 speed-normal
10 throw 10 speed-slow
10 bow 84 direction-forward

5 squat 14 direction-backward
10 punch 15 direction-left
10 stomp 12 direction-right
25 jump 15 direction-upward
11 golf 35 direction-circle
20 tennis 27 direction-slalom
15 wave 10 bend-right
11 play-guitar 10 bend-left
10 play-violin 18 counter-clockwise
11 stir 17 clockwise
11 wipe 23 foot-right
11 dance 15 foot-left

45 hand-right
48 hand-left

5 hand-both
5 deep
5 slight

10 high
10 low

5 putting
6 drive

10 smash
10 forehand

6 waltz
5 chachacha

Table 6.2: List of all 49 different labels used in the dataset.
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Samples Label Combination Samples Label Combination

10 walk, direction-forward, speed-normal 5 stomp, foot-right

10 walk, direction-forward, speed-slow 5 stomp, foot-left

9 walk, direction-forward, speed-fast 5 jump, direction-forward

31 walk, turn-right 5 jump, direction-backward

28 walk, turn-left 5 jump, direction-right

10 walk, bend-left 5 jump, direction-upward

10 walk, bend-right 5 jump, direction-left

18 walk, direction-circle, counter-clockwise 5 golf, putting

17 walk, direction-circle, clockwise 6 golf, drive

27 walk, direction-slalom 5 tennis, hand-right, smash

10 walk, direction-upward 5 tennis, hand-right, forehand

9 push-recovery, direction-forward 5 tennis, hand-left, smash

9 push-recovery, direction-backward 5 tennis, hand-left, forehand

7 push-recovery, direction-right 5 wave, hand-right

10 push-recovery, direction-left 5 wave, hand-left

41 run, direction-forward 5 wave, hand-both

8 kick, foot-right 5 play-guitar, hand-right

5 kick, foot-right, high 6 play-guitar, hand-left

5 kick, foot-right, low 5 play-violin, hand-right

5 kick, foot-left, high 5 play-violin, hand-left

5 kick, foot-left, low 5 stir, hand-right

5 throw, hand-right 6 stir, hand-left

5 throw, hand-left 5 wipe, hand-right

5 bow, deep 6 wipe, hand-left

5 bow, slight 6 dance, waltz

5 squat 5 dance, chachacha

5 punch, hand-right

5 punch, hand-left

Table 6.3: All 54 label combinations used in the dataset.

6.3 Feature Selection

In feature selection, the goal is to find a subset of features that are relevant to the problem at hand. The
selection process is a crucial first step. This is due to the fact that any classifier can only compute pre-
dictions from the features it receives. If those features do not contain the relevant features, the classifier
obviously cannot produce optimal results. Additionally, a reduction of the feature dimensionality has
several advantages: Firstly, the computational complexity is usually proportional to the dimensionality
of the feature space. Secondly, if the feature space has very high dimensionality but the dataset is rela-
tively small, overfitting becomes more likely. Lastly, reducing the feature set can also bring interesting
insights to better understand a problem at hand [GE03].

Unfortunately, the optimal feature set cannot be computed directly by evaluating all possible subsets.
This is due to the fact that, for a feature set with N different features, 2N − 1 non-empty subsets exist.
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As previously described, a set of N = 29 different features can be identified in this work with results
in 229 − 1 = 536870911 subsets. Evaluating each of these subsets is infeasible. In the literature, three
popular heuristics can be identified to solve this problem: the filter method, the wrapper method and
the embedded method. The filter method selects features by ranking them with correlation coefficients.
The wrapper method evaluates the usefulness of a subset using a classifier. The embedded method works
similarly to the wrapper method in the sense that it uses a predictor. However, while the wrapper methods
relies on an external measure to assess the quality of the feature set, the embedded method relies on
feature selection that is inherent to the learning algorithms. To give a concrete example, Support Vector
Machines with L1 regularization can be used to perform feature selection using the embedded method.
This is possible because L1 regularization yields sparse weights. The selection can then be done by
simply picking all features that correspond to non-zero weights without the need of an externally defined
measure [GE03].

In this work, feature selection is performed using the wrapper method with backwards elimination. In
backwards elimination, one starts with the full feature set. Each feature is temporarily excluded from
the set once and a model is trained on each of the subsets. For each subset, the model is evaluated on
the test set and a measure is computed. The feature with the least effect on the measure is then removed
from the feature set. This process is repeated until the feature set is empty (or until a stopping criterion
is reached). The feature selection was performed on the dataset described in section 6.2. Of the 29 avail-
able features, the features marker_pos, marker_vel and marker_acc were initially excluded. This is due
to the very high dimensionality of the three mentioned features (168 dimensions each) that resulted in
numerical problems. The three excluded features will be revisited later. Additionally, to avoid too much
complexity, all features under consideration were normalized, smoothed (using the previously described
moving average with W = 3) and scaled to be in range [−1,1]. The reasoning behind this decision is that
it seems very unlikely that unnormalized features perform well since they are, as previously discussed,
neither invariant to translation nor rotation. Another concern was that the unnormalized features can
cause overfitting. The smoothed features were selected as the default for similar reasons since it seems
unlikely that an error-prone signal with strong jitter performs better than a slightly smoothed representa-
tion thereof. Scaling is important to ensure a good initialization when using k-means clustering. Since
the dataset contains 49 different classes, 49 HMM models with 5 states each and the left-to-right topol-
ogy with ∆ = 1 were used. Each model was trained using the Baum-Welch algorithm for 10 iterations.
The transition matrix and start probabilities were initialized uniformly whereas k-means clustering was
used to initialize the means and covariance matrices. The covariance matrix was further constrained to be
diagonal and the diagonal elements were constrained to be larger than 0.0001 to avoid numerical instabil-
ities. The entire dataset was initially shuffled to break correlations between nearby training samples. A
stratified 3-fold was used to train and evaluate the HMMs three times per feature subset. In each round,
the likelihoods under each model were calculated for the test split. The likelihoods were additionally split
into a set of positive and negative likelihoods. The positive set contains all likelihoods of the motions that
should have been recognized by the respective model whereas the negative set contains the likelihoods
of the motions that should have been rejected. Since 49 different HMMs are used this results in 98 sets
of likelihoods: 49 sets of positive instances and 49 sets of negative instances. The mean and standard
deviation were then calculated per set over all three rounds, resulting in 98 means of the likelihoods and
their respective standard deviations.

A possible way to measure the results in each round is to compute the distance between the distribution
of positive and negative likelihoods on a per-class basis. The Wasserstein metric [GS+84, was] can be
used to compute the distance between two Gaussian distributions:

mi =

√

|µ̄posi
− µ̄negi

|+
(

σ̄2
posi

+ σ̄2
negi

−2
√

σ̄2
posi

σ̄2
negi

)

, (6.1)

where i denotes the i-th class, µ̄posi
is the mean over all positive and µ̄negi

the mean over all negative
likelihoods for the i-th class. σ̄posi

and σ̄negi
denote the respective standard deviations. It was further

assumed that the positive and negative likelihood distributions are Gaussian. This assumption is not
formally proven here but seems likely to hold given the central limit theorem.
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After computing m1, . . . ,m49, the individual distance measures must be combined into a single mea-
sure. Since all labels are equally important, the median is used here. This ensures that the distance
between positive and negative distribution is balanced across all 49 classes. The total dimension of the
features should be considered as well. If, for example, roughly the same distance has been computed for
a feature set with 100 and 10 dimensions respectively, the feature set with only 10 dimensions should be
preferred. A simple way to achieve this is to compute a measure per feature. Based on these considera-
tions, the following combined measure is devised:

m =
1
D

m̃, (6.2)

where D denotes current number of feature dimensions and m̃ is the median over individual Wasser-
stein metrics m1, . . . ,m49. Other measures were considered (e.g. AICc and the Mahalanobis metric) but
proofed to not work as well as the Wasserstein-based metric.

Round Score Dimension Deleted Feature

1 5 899 198 —
2 6 615 158 joint_acc
3 9 009 118 joint_vel
4 10 686 78 joint_pos
5 12 602 66 extremities_acc
6 15 508 54 extremities_vel
7 17 176 53 com_vel_norm
8 18 740 49 extremities_vel_norm
9 20 856 46 angular_momentum

10 23 644 42 extremities_acc_norm
11 26 253 41 root_vel_norm
12 32 415 38 com_vel
13 35 563 35 com_acc
14 38 544 32 root_acc
15 40 214 31 joint_acc_norm
16 42 362 30 joint_vel_norm
17 44 416 29 com_acc_norm
18 46 866 28 root_acc_norm
19 48 849 27 marker_acc_norm
20 50 754 26 angular_momentum_norm
21 52 949 25 marker_vel_norm
22 54 781 22 com_pos
23 51 928 19 root_pos
24 54 525 16 root_vel
25 48 524 13 root_rot
26 127 598 1 extremities_pos

Remaining Feature root_rot_norm

Table 6.4: The results of the feature selection using backward elimination. The table lists all elimination
rounds, the feature that was deleted in each round, the measure that was computed in each
round without the deleted feature and the dimension of the combined features without the
deleted feature.
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Table 6.4 lists the results per elimination round. The best feature was found in the last round: root_rot_norm.
However, the individual likelihoods reveal that the single feature does not capture enough information to
recognize all motion types. For example, the stir motion had a mean loglikelihood of −12046±43080,
which clearly indicates that this motion cannot be recognized using only the normalized norm of the root
rotation. Some direction labels achieve similarly bad results. The label clockwise and counter-clockwise

for example achieved a loglikelihood score of −311± 67 and −275± 103 respectively. However, the
mean loglikelihoods for motions that should not be recognized by the models are 401±701 and 405±725
respectively. This feature set was therefore discarded as an outlier.

The second best result was achieved in round 22 with the following set of features: root_pos, root_vel,
extremities_pos, root_rot and root_rot_norm. This is a more reasonable result. The velocity of the
subject’s root certainly is important to detect the direction the subject moves in and to decide if the
motion is of stationary or dynamic nature. The position of the extremities proved to be an especially
important feature since it survived all elimination rounds until the last one. This also makes sense: A
lot of motions in the dataset involve the subject’s hands or feet. Examples are stirring, waving, throwing
a ball, playing the guitar or violin and kicks. The position of the extremities presumably also help
with identifying which hand or foot was used to perform the motion. Including the root rotation and
its norm makes sense as well: Since the root position and the root rotation are both included, it should
be possible to adequately determine the subject’s position and rotation in space from the feature set.
This is obviously important information. An interesting observation is that the joint angles are not that
important to recognize motions. The joint angles were already discarded in the fourth round. This is
presumably due to the relatively low information contents per feature. While some joints might carry
important information, this information is also redundantly present in other features like the position of
the extremities. Since other feature sets achieved similar scores, they will be revisited in the last section
during the end-to-end evaluation.

All things considered, the selected features seem like a good choice. This claim is backed by the
data in table 6.6 (at the very end of this section) which lists the mean likelihoods and their standard
deviation per label over the entire test dataset for HMMs that were trained using the previously mentioned
feature set from elimination round 22. The likelihoods of positive samples are consistently high with a
reasonable standard deviation. Additionally, the models only respond to the motions that they were
trained to recognize. The only exception is the model that represents walking motions, which seems
likely to produce false positives. This is presumably due to the fact that very different walking motions
(e.g. walking and making a 90 degree turn vs. walking forward) were used to train the same model. The
high standard deviation of the negative likelihoods can be explained by the fact that an extremely wide
variety of very different motions were all combined into a single score. In other words: The positive
likelihoods were only computed for motions of the same type whereas the negative likelihoods combines
motion of all other types into a single score.

Score Dimension Additional Feature

54 781 22 —

4 456 181 marker_pos

4 459 181 marker_vel

NaN 181 marker_acc

Table 6.5: Comparison between the baseline feature set and the previously excluded features. Each of
the previously excluded features is added once to the baseline set and the performance is
evaluated.

Recall that three features were excluded from the previous feature selection process: marker_pos,
marker_vel and marker_acc. This was necessary because of numerical problems when including these
features in the initial feature set during backwards elimination. More concretely, the probabilities during
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inference would become so small that an underflow occurred even though the HMM implementation
used during the evaluation already uses logarithmic probabilities to counter the problem. However, these
features are now revisited. To do so, the best feature set as previously determined was used as a baseline.
Each of the three left out features was then added once. The achieved scores (using the same measure
and training procedure as before) are listed in table 6.5.

It is quite obvious from the data that the marker positions, velocities and accelerations do not contribute
anything to the feature set; instead the scores worsen significantly. Notice that the marker accelerations
even cause numerical instabilities due to vanishing probabilities, hence a score cannot be computed in this
case. The three temporarily excluded features are thus excluded permanently from further consideration.
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Class Positive Loglikelihood Negative Loglikelihood

walk 12858±4924 10095±16747
push-recovery 84073±26271 −830206±1314193
run 13655±3937 −161784±344406
kick 24898±5235 −207653±422938
throw 25122±6796 −4982845±8584547
bow 31251±4014 −5946674±9198336
squat 32149±6640 −2198971±3600540
punch 35073±11606 −1828241±3125022
stomp 34982±3633 −3409349±5592487
jump 24124±6256 −293847±612549
golf 37559±8758 −1880819±3414369
tennis 34408±3933 −303574±551566
wave 58801±7035 −14784535±21892345
play-guitar 49155±4275 −3531256±6955093
play-violin 55510±3780 −6878584±10443505
stir 28269±52856 −5574138±8338055
wipe 48898±4734 −8223779±13225863
dance 33981±5709 −178554±259631
turn-right 18467±3158 −58574±111112
turn-left 18594±7066 −36449±69685
speed-fast 20673±3640 −333766±531406
speed-normal 27002±8508 −393349±618222
speed-slow 28689±2372 −410014±559746
direction-forward 20472±17043 −159039±328429
direction-backward 54408±24864 −720136±1467702
direction-left 86904±52238 −949005±1478147
direction-right 50982±24431 −1271632±1879763
direction-upward 27477±4773 −194048±366744
direction-circle 17183±6479 −24067±75746
direction-slalom 23776±4992 −38560±106968
bend-right 28950±3030 −191518±237383
bend-left 23457±4346 −206328±262216
counter-clockwise 21281±5297 −50763±115171
clockwise 20271±8250 −45160±83697
foot-right 25384±5914 −229056±472367
foot-left 31525±2765 −1583832±2753615
hand-right 39043±11234 −457165±819820
hand-left 40720±11209 −380057±723547
hand-both 62305±4304 −8376056±12155675
deep 29047±2347 −5173123±7942443
slight 31561±6827 −3272445±6239772
high 29758±4651 −1173850±2088698
low 27388±3102 −1653420±2928772
putting 39531±4220 −4056969±6825540
drive 36932±11987 −1846573±3369606
smash 35313±4018 −328343±665057
forehand 31963±4084 −826177±1417883
waltz 36618±10136 −396325±634596
chachacha 29362±8173 −797359±1213353

Table 6.6: The mean positive and negative loglikelihoods under each of the 49 classes for the feature set
selected during round 22.
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6.4 Hidden Markov Models

As discussed in chapter 5.1, Hidden Markov Models can be used to perform motion recognition. How-
ever, HMMs have multiple hyperparameters that need to be selected, namely the number of states and
the topology. Additionally, different initialization strategies can be used. As mentioned in chapter 5.1.3,
proper initialization is a crucial step before training. Moreover, a comparison between the performance
of HMMs and FHMMs makes sense. FHMMs have another important hyperparameter, the number of
chains.

Throughout this section, the experimental setup from the previous feature selection section was used
again. More concretely, the same dataset was used. To make the results comparable between this and
the previous section, the same permutation was used to shuffle the dataset. 3-fold cross-validation was
used with 49 HMMs, one for each class. Each HMM was trained for 10 iterations. The best feature set
from the previous section was used throughout the following experiments: root_pos, root_vel, extrem-

ities_pos, root_rot and root_rot_norm. All features were normalized, smoothed and scaled. The same
Wasserstein-based metric (equation 6.2) from the previous chapter was used to score the results. The
default parameters of the HMMs were as follows: 5 states, left-to-right topology with ∆ = 1, uniform
initialization of the transition & start probabilities and k-means initialization of the Gaussian emission
distribution parameters with the covariance matrices constrained to be diagonal. Notice that these are
only defaults. Each experiment will vary either one or multiple of these parameters, which will be
clearly stated in each subsection.

6.4.1 Hyperparameters

The optimal number of states and topology are found using grid search. In grid search, each possible
combination of hyperparameters is used to train a model on the training dataset which is then evaluated
on the test dataset. A measure is computed per combination and the best combination is selected. Such
a search is feasible in this case since only two different hyperparameters are evaluated.

In theory any natural number can be used for the number of states and countless different topologies are
possible. In practice however, it makes sense to limit the number of states K to be between 5 and 20 states
when recognizing human motions [KTN07a, KTN08]. In this evaluation K ∈ {3, . . . ,20}, resulting in
18 different values for the number of states. The topologies (chapter 5.1.2) under consideration are the
following:

• fully-connected,

• left-to-right without a ∆ constraint,

• left-to-right with ∆ = 1, and

• left-to-right with ∆ = 2.

The left-to-right topologies proved to be especially well-suited for motion recognition [KTN08]. Dif-
ferent variations of this topology are evaluated by varying the ∆ parameter. For completeness, the fully-
connected topology is considered as well.

Hence 18 different values for the number of states and 4 different topologies were under evaluation.
This results in a total of 18 · 4 = 72 combinations, making the grid search easily feasible. The previously
described experimental setup was used, with all parameters fixed and set to their default values except
for the number of states and the topology. The results are depicted in figure 6.1.

As can be seen from the results, it is indeed desirable to have a low number of states. Good choices are
between 5 and 8 states, depending on the topology. Another interesting observation is that the left-to-right

topology with ∆ = 1 is the only topology that performed consistently without large jumps. However, the
best result was achieved by the left-to-right topology without a ∆ constraint and with 8 states. The result
support the claim that a low number of states is preferable for motion recognition and that the left-to-right

topology is a good choice when dealing with motions. However, except for a few cases, the performance
across topologies was similar.

Classification of Human Whole-Body Motion using Hidden Markov Models



Page 40 Chapter 6. Evaluation

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

number of states

25000

30000

35000

40000

45000

50000

55000

60000

s
c
o
re

fully-connected

left-to-right without ∆ constraint

left-to-right with ∆ = 1

left-to-right with ∆ = 2

Figure 6.1: The results of the hyperparameter grid search. The four different topologies are plotted indi-
vidually. For each topology the number of states are plotted against the respectively achieved
score.

6.4.2 Parameter Initialization

Different strategies can be used to initialize the parameters of a Hidden Markov Model before starting
the training (see chapter 5.1.3). To quickly recap, the transition matrix and the start probabilities can
either be initialized uniformly or by randomization. The implementation of a uniform initialization is
trivial. The randomization can be easily achieved as well: The transition and start probabilities are
initialized uniformly. Next, each element from the transition matrix is multiplied by a pseudo-random
number (in this case the random number was drawn uniformly from the interval [0,1]). Notice that for
each multiplication a new random number must be used. After randomization, the probabilities need
to be normalized such that they sum to 1. This can be easily done by summing over each row of the
transition matrix and dividing each element in that row by the the respective sum. The randomization
of the start probabilities vector works analogously. This randomization automatically ensures that the
desired topology is maintained.

The means and covariance matrices can either be randomized or estimated using the k-means clustering
algorithm. The randomization of the mean vectors is straightforward: D pseudo-random numbers (in this
case drawn uniformly from [−1,1] to match the feature scaling) are combined to form the mean vector
(D denotes the number of features). This is repeated for each state to obtain K random mean vectors.
The randomization of the covariance matrix is a bit more complicated since a covariance matrix is by
definition symmetric and positive semi-definite. However, this can be easily achieved as well: First,
initialize a randomized matrix R of the desired dimension (that is D×D). A symmetric and positive
semi-definite matrix is then be obtained as follows [psd]:

ΣΣΣ = RRT . (6.3)

Again, this is repeated K times to obtain one covariance matrix per state.
In contrast, the initialization using k-means is done as follows: First K clusters are found in the training

dataset using the k-means algorithm as implemented by scikit-learn (the implementation uses Lloyd’s

algorithm [KMN+02]). More concretely, all training observation sequences are “stacked” vertically.
The clustering algorithm is then run on this stacked matrix. Also recall that K is the number of states,
in this case K = 5. Next, the mean vectors of each state are simply set to their respective D-dimensional
cluster centers. The computation of the covariance matrix is a bit more complicated: For each state, each
row of the stacked observation sequences is assigned to a cluster. This is simply done by computing the
Euclidean distance between each cluster center and the current sample and selecting the cluster with the
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smallest distance. Next, a maximum likelihood covariance estimator is used to estimate the K covariance
matrices. In this case, the EmpiricalCovariance estimator as implemented by scikit-learn was
used.

Finally, the covariance matrices can be constrained to be diagonal. This is done during initialization by
simply setting every element to 0 except for the ones on the diagonal. During training, the maximization
of the covariance is adopted to the diagonal case as described in [HAHR01]. The hmmlearn library
implements this approach.

To summarize, the following different initializations can be identified: The transition and start prob-
abilities can be randomized or initialized uniformly. The means and covariances of the emission distri-
bution can be randomized as well or estimated using the k-means clustering algorithm. The covariance
matrices can be unconstrained (“full”) or constrained to be diagonal. This results in 2 ·2 ·2 = 8 different
combinations. Similarly to the previous subsection, grid search was used to evaluate each possible com-
bination. The previously described experimental setup was used again, with all parameters fixed and set
to their default values except for the initialization strategies. The results are given in table 6.7.

Loglikelihood

Transition & Start Emission Covariance Score Positive Negative

randomized randomized full NaN — —

randomized randomized diagonal 10 117 29587±5495 −102020±226759

randomized k-means full 641 257 −24822±60461 −9623115±14139634

randomized k-means diagonal 54 782 31268±5299 −721413±1213389

uniform randomized full NaN — —

uniform randomized diagonal 9 392 30444±6038 −130813±211034

uniform k-means full 658 865 −24746±60202 −9594632±14526834

uniform k-means diagonal 54 781 31242±5302 −782554±1213368

Table 6.7: The achieved scores and median loglikelihoods across all classes for each possible combina-
tion of initialization strategies.

A first conclusion that can be drawn from the results is that a randomizing the emission distribution
parameters is not a good initialization strategy. If the covariance matrices are unconstrained, the score
cannot even be computed due to vanishing probabilities and resulting numerical underflows. If the co-
variance matrices are constrained to be diagonal, a score can be computed. Notice however that the
achieved score is significantly worse than the scores achieved using k-means initialization. This nicely
illustrates that Baum-Welch does not necessary converge to a global maximum. Having a good initial
estimate is therefore indeed a crucial step, as previously claimed. Another interesting conclusion is that
the initialization of the transition and start probabilities is less important. Take for example the results
of the fourth and last row: The achieved scores and loglikelihoods are almost identical. Lastly, consider
the difference between full and constrained covariance matrices for the emission distribution. While the
scores for the full covariance matrices are higher, the mean loglikelihood scores plummet. Compared
to the previously achieved results (table 6.6) using diagonally constrained matrices, the full covariance
matrices deliver far worse results overall.

It therefore is clear that the best choice is to uniformly initialize the transition and start probabilities
with k-means-based estimations for the means and covariances of the emission distribution. Additionally,
the covariance matrices needs to be constrained to be diagonal.
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6.4.3 Factorial Hidden Markov Models

Factorial Hidden Markov models are an important extension to HMMs when dealing with motions.
However, this benefit comes at the cost of being computationally more expensive than regular HMMs. It
therefore makes sense to not only consider the score that FHMMs achieve but to also consider the time
it takes to train and evaluate them.

During this evaluation, a total of 4 different models were evaluated:

• regular HMM with 5 states,

• FHMM with 5 states and 2 chains,

• FHMM with 5 states and 3 chains, and

• FHMM with 5 states and 4 chains

The FHMMs were trained using the sequential training algorithm (see chapter 5.1.5). Each chain was
trained for 10 Baum-Welch iterations. The emission distribution parameters of the subsequent chains
were initialized on the residual error using the already discussed k-means approach. All other parameters
were set to the default values as defined above. The duration of each round was recorded as well since
computational feasibility should also be a consideration. For reference, the training was performed on a
machine with an 8-core Intel Core i7-4770 CPU clocked at 3.40 GHz. The results are listed in table 6.8.

Model Loglikelihood

Type Chains Score Duration Positive Negative

HMM — 54 782 49 sec 31256±5296 −722971±1213360

FHMM 2 29 369 741 sec 32663±5189 −356975±656688

FHMM 3 18 404 5 137 sec 28829±3873 −208319±410939

FHMM 4 12 369 34 890 sec 25317±3572 −132873±276476

Table 6.8: Results of the comparison between FHMMs and HMMs. The given durations measure the
time it took to train and evaluate the models over 3 rounds each.

The results are somewhat surprising: The scores of the models decrease as more chains are added.
However, the FHMM with 2 chains shows promise. The median loglikelihood has increased significantly
while the standard deviation has decreased. This indicates that the model is capable of better fitting the
data at hand. FHMMs with more than 2 chains, however, are not a good option. First, they do not seem
to provide a significant benefit over an HMM or an FHMM with 2 chains. Additionally, the training and
evaluation times increase significantly. A possible explanation for this result is that only very few states
are required to discriminate motions (see section 6.4.1). The additional history information that can be
encoded by FHMMs with more than two chains appears to be counter-productive in this case.

6.5 Decision Makers

Recall that decision makers are used to find a mapping from the likelihoods of the (F)HMMs to the final
predictions. Since decision makers are usually classifiers, their hyperparameters must be selected as
well. This section therefore focuses on each individual decision maker whereas the next section focuses
on covering the entire classification process as a whole.

In the following subsections, four different decision makers will be evaluated: Logistic Regression and
Support Vector Machines are two binary classifiers that can be used with the binary relevance method
(chapter 5.3.2). In contrast, Decision Trees and Random Forests can directly be trained on the multi-label
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problem and are therefore instances of models that use a modified learning algorithm (chapter 5.3.3).
Notice that simpler decision makers like always picking the model with the maximum likelihood are not
considered in this section since they are parameter-free. They will be, however, considered during the
end-to-end evaluation that follows in the next section. Since all decision makers are evaluated similarly,
this section starts by describing the general evaluation process. This includes the definition of new
measure since now a classification problem is considered. The four decision makers are discussed during
the remainder of this section.

The evaluation was performed on the usual dataset (section 6.2). A different permutation was used
to shuffle the dataset. The best set of features (section 6.3) were then used to train 49 Factorial Hidden
Markov Models: root_pos, root_vel, extremity_pos, root_rot and root_rot_norm. All features were nor-
malized, smoothed and scaled as previously described. For each FHMM, the optimal configuration as
described in section 6.4 was used: each FHMM used 8 states and 2 chains with the unconstrained left-

to-right topology. The initialization for the transition and start probabilities was uniform, with the means
and covariances of the emission distribution being initialized with the k-means method. The covariance
matrices were constrained to be diagonal. Each FHMM was trained using the sequential training algo-
rithm with each chain being trained for 100 Baum-Welch iterations. Stratified 3-fold was used to split the
dataset into three training and test datasets. The loglikelihoods under each model were then computed
for each of the test and train splits. This data forms the basis for the following evaluation: Each deci-
sion maker is trained on the train loglikelihoods and then evaluated on the respective test loglikelihoods.
Since a 3-fold was used to split the dataset, the same split applies to the loglikelihoods; hence a total of
3 rounds can be performed. In each round, the decision maker is first trained on the train loglikelihoods.
After training, the decision maker is evaluated on the corresponding test loglikelihoods. The correspond-
ing labels of the dataset are available as well. Notice that the FHMMs were only trained and evaluated
once for every label. This re-using of loglikelihoods significantly speeds up the evaluation of the decision
makers.

The evaluation of the decision makers can thus simply be seen as a 3-fold evaluation of a supervised
classifier where the loglikelihoods are the features and the labels of the motions can be re-used as the
targets. It therefore makes sense to use metrics that are commonly used for classification problems to
measure the results. To define measures, it is useful to first define the following quantities:

• The number of true positives is the number of samples that were correctly classified as positive.
To give an example, if the label of a samples is y = 1 and the classifier predicts p = 1, the sample
is counted as true positive. The number of true positives is denoted as TP.

• In contrast to a true positive, a sample is counted as a true negative if it is correctly classified as
negative. This would be the case for a sample with label y = 0 and prediction p = 0. The number
of true negatives is denoted as TN.

• If a sample is wrongly classified as positive but is actually labeled as negative, a false positive

occurs. To give an example, a sample with y = 0 and p = 1 would be counted as such. The number
of false positives is denoted as FP.

• Lastly, if a sample is wrongly classified as negative but is actually positive, a false negative occurs.
An example for this case would be a sample with y = 1 and p = 0. The number of false negatives
is denoted as FN.

These four quantities cover every possible outcome for binary classification (which is applicable here as
well since each label is encoded as a binary vector). Using these quantities, a couple of measures can be
defined.

Firstly, the accuracy is an extremely common measure. It is defined as:

accuracy =
TP+TN

TP+FP+TN+FN
. (6.4)

The accuracy simply measures the percentage of correctly classified samples. However, while being
intuitive, the accuracy also has a severe flaw. To illustrate this, consider the following example: Assume
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that a dataset with 100 samples is classified. Of the 100 samples, only 1 have a positive and the remaining
99 have a negative label. Now consider a classifier that always predicts p = 0 regardless of the sample’s
features. In this case, the classifier would achieve an accuracy of 99

100 = 0.99. It should be obvious that,
in this case, the accuracy is not a good metric to measure to quality of the classifier.

To overcome the shortcomings of the accuracy, the precision and recall are popular metrics:

precision =
TP

TP+FP
and recall =

TP
TP+FN

. (6.5)

Precision and recall are often combined into a single metric called the F1 score:

F1 = 2
precision · recall

precision+ recall
. (6.6)

Like the accuracy, precision, recall and F1 score are in the interval [0,1]. Generally speaking, a value
close to 1 for all three scores is desirable [vR79]. In the remainder of this section, the F1 score is used
to assess the decision makers. Since the F1 score, precision and recall are computed per class, a possible
way to combine the individual scores is to take the mean over all classes per metric.

6.5.1 Logistic Regression

Logistic Regression is a very simple but popular binary classifier. It essentially combines linear regres-
sion and the logistic function to perform binary classification. The reader is referred to other works (e.g.
[B+06]) for a full discussion.

In this work, the LogisticRegression implementation found in scikit-learn with the liblinear

solver [FCH+08] is used. Multi-label classification is achieved using the binary relevance method. Since
Logistic Regression is a rather simple model, the only hyperparameters considered in this work are those
that control regularization. More concretely, Logistic Regression can be used with L1 or L2 regulariza-
tion. Regularization is essentially an additional term in the cost function that penalizes large weights
to avoid overfitting. The difference between L1 and L2 regularization lies in the way the penalty term
is calculated: For L1 regularization, this happens using the || · ||1 norm whereas L2 regularization uses
|| · ||2 instead. A coefficient C controls the “strength” of the regularization. In case of the scikit-learn

implementation, a small (that is close to zero) coefficient corresponds to strong regularization whereas a
larger coefficient relaxes it. To summarize, the following hyperparameters and values are considered:

• L1 vs. L2 regularization

• C ∈ {10−5,10−4, . . . ,104,105}

This results in a total of 2 ·11 = 22 combinations, which were evaluated using grid search. Each param-
eter combination was evaluated using a 3-fold as described above. The F1 score was computed per class
and then combined by taking the mean over all classes. Figure 6.2 depicts the results.

As can be seen from the diagram, L1 regularization yields better results in this case. More concretely,
the best result with Logistic Regression is achieved with said regularization and C = 10−3. This makes
sense since L1 regularization allows that many weights can become zero making it more suitable for
sparse signals. This is the case for this dataset since only a few labels will be set to 1. Overall, Logistic
Regression works very well, indicating that the problem is linearly separable.

6.5.2 Support Vector Machine

Support Vector Machines [HDO+98] are another very popular binary classifier. Only the very basics of
Support Vector Machines are discussed here. Like Logistic Regression, SVMs try to fit a hyperplane
that separates the positive and negative samples in the feature space. The hyperplane is fitted such
that the distance between it and the samples that are close to it is maximized (large margin classifier).
Additionally, only the feature vectors of close-by samples (so-called support vectors) must be considered
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Figure 6.2: The results of the hyperparameter grid search for Logistic Regression. For each regularization
type, the regularization coefficient is plotted against the achieved F1 score.

when fitting the hyperplane which makes SVMs especially efficient on large datasets (since the majority
of the samples can be ignored). Lastly, SVMs use what is commonly referred to as the “kernel trick”

to fit problems that are not linearly separable. The fundamental idea here is to transform the features to
a very high-dimensional space. If the dimension is high enough, the samples will eventually be linearly
separable. However, such a transformation is computationally infeasible. The kernel trick uses kernel
functions which enables the classifier to operate in high-dimensional space without the need to actually
compute the coordinates [B+06].

In this work, the linear SVM implementation found in scikit-learn is used: LinearSVC. Under the
hood, LinearSVC uses the already mentioned liblinear solver. Notice that LinearSVC only supports
a linear kernel. In this case, however, this is very much sufficient since Logistic Regression already
achieves very good results, indicating that the data is linearly separable. The binary classifier is applied
to the multi-label problem using the binary relevance method. The following hyperparameters are under
consideration:

• L1 vs. L2 regularization

• C ∈ {10−5,10−4, . . . ,104,105}

Notice the similarity to the hyperparameter of Logistic Regression. Furthermore, the squared hinge loss
was used instead of the more common hinge loss. This is necessary because the hinge loss cannot be
used with L1 regularization in the scikit-learn implementation. The results of the grid search are depicted
in figure 6.3.

The results for the Support Vector Machine are very similar to the results achieved with Logistic Re-
gression, although Logistic Regression performed slightly better. The best hyperparameter combination
as measured by the F1 score is achieved for L1 regularization with C = 10−2. As already discussed dur-
ing the evaluation of Logistic Regression, the L1 regularization allows sparse weights making it a good
choice for the dataset at hand.
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Figure 6.3: The results of the hyperparameter grid search for Support Vector Machine with a linear ker-
nel. For each regularization type, the regularization coefficient is plotted against the achieved
F1 score.

6.5.3 Decision Tree

Decision Trees can be used to perform classification. In this case, the leaves of the tree represent the
classes and the inner nodes correspond to an input variable. The branches between nodes represent
decisions that are based on the input variables. A Decision Tree can then be traversed from the root while
a decision needs to be made at each inner node (e.g. if input variable x is greater than some threshold
follow the left branch; follow the right branch otherwise) until a leaf node is reached. The learning of
such a model is performed by splitting the set of training samples at each node. The relevant attribute and
the threshold to make this decision are selected using a criterion, e.g. the maximum information gain.
This process is then repeated recursively for each child node until either all samples belong to the same
class (in which case the node turns into a leaf) or until some other stopping criterion is reached (e.g. a set
maximum depth) [B+06]. Decision Trees can be extended to support multi-label classification, which
makes them an instance of a modified algorithm [VSS+08].

In this case, the scikit-learn implementation is used: DecisionTreeClassifier. The imple-
mentation uses the CART algorithm [BFSO84] to perform learning, which has been modified to also
support multi-label problems. The following important hyperparameters can be identified:

• The criterion that measures the quality of a split. The implementation supports the Gini impurity

and the information gain.

• The maximum depth that the Decision Tree can reach. In this case, the following values were
considered: {1,2, . . . ,40}.

The 2 · 40 = 80 possible combinations were explored using grid search. The evaluation was performed
as previously described and the averaged F1 score was used as a measure. Figure 6.4 depicts the results.

As can be seen from the results, the Decision Tree does not need to be very deep to work properly.
Trees that use the information gain splitting criterion required less depth than trees where the Gini impu-
rity was used. However, both criteria eventually converge to approximately the same score of F1 = 0.8.
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Figure 6.4: The results of the hyperparameter grid search for Decision Tree. For each splitting criterion
the maximum allowed depth is plotted against the achieved F1 score.

Since the information gain criterion reaches this convergence faster, it should be preferred. In either case,
a tree with a maximum depth of 15 is sufficient to consistently learn the problem at hand. However, the
Decision Tree classifier is outperformed by Logistic Regression and SVMs on this dataset.

6.5.4 Random Forest

The last classifier that is discussed here is called Random Forest [Bre01]. A Random Forest is a so-
called ensemble classifier: This means that it uses multiple, potentially weak, classifiers internally and
combines their predictions into a final prediction. Random Forests do this by using multiple Decision
Trees internally. The final prediction is then computed by taking a majority vote over the prediction
of each tree. To avoid ending up with almost identical trees, randomness is introduced during training.
More concretely, this is achieved by two factors: Bootstrapping [Efr79] is used to fit trees on re-sampled
training examples. Additionally, Decision Trees do not select the best split but randomize this process
by only considering a random subset of the available features. Since Random Forests use Decision Trees
internally, they can be used to perform multi-label classification as well if the trees support it.

In this case, the scikit-learn implementation is used: RandomForestClassifier. The implemen-
tation uses DecisionTreeClassifiers internally using the same training algorithm as described
above. As already mentioned, the splitting decision is now randomized. Since Decision Trees were al-
ready considered in the previous section, a maximum depth of 15 was selected. However, the following
additional hyperparameters are considered:

• The criterion that measures the quality of a split. The implementation supports the Gini impurity

and the information gain. This is re-evaluated since the splitting decision is now randomized.

• The number of Decision Trees that are grown in the Random Forest classifier: {1,2, . . . ,100}.

The 2 ·100 = 200 possible combinations were explored using grid search. The evaluation was performed
as previously described and the averaged F1 score was used as a measure. Figure 6.5 depicts the results.

Classification of Human Whole-Body Motion using Hidden Markov Models



Page 48 Chapter 6. Evaluation

20 40 60 80 100

number of trees

0.0

0.2

0.4

0.6

0.8

1.0

s
c
o
re

Gini impurity criterion

information gain criterion

Figure 6.5: The results of the hyperparameter grid search for Random Forest. For each splitting criterion,
the number of internally used Decision Trees is plotted against the achieved F1 score.

As can be seen from the data, Random Forests improve as more and more Decision Trees are used
until they eventually converge to a similar F1 score. A couple of interesting conclusions can be drawn
from the results: Firstly, the information gain splitting criterion generally performs better than the Gini
impurity on this problem. This was already the case during the evaluation of the individual Decision
Trees. Secondly, a Random Forest that uses a single Decision Tree internally is worse than a single
Decision Tree although they share the same parameters. This nicely illustrates that trees in a Random
Forest are, well, randomized. However, as more and more suboptimal trees are added, the Random Forest
suddenly outperforms the best Decision Tree from the previous section. This is the crucial property that
makes ensemble methods so successful. Still, Logistic Regression and SVMs achieved better results on
this dataset.

6.6 Classification Systems

After having evaluated the individual components of the system in the previous sections, this section
brings it all together by evaluating the entire system end-to-end. To do so, two fundamental approaches
must be distinguished first. Recall from chapter 5.3 that the multi-label classification problem can either
be transformed to a single-label problem by treating each combination of labels as a single substitute
label. In this case, each HMM represents such a substitute class and the classification is then simply a
matter of selecting the class that corresponds to the model with the maximum likelihood. The second
option truly handles the multi-label problem by using one HMM per label. This means that a single
motion is potentially used to train multiple HMMs. However, in this case a more advanced decision
maker is needed to map the likelihoods of the different HMMs to the multi-label prediction since simply
picking the maximum is not an option anymore. Since these two approaches are inherently different they
are treated as two distinct systems: The system that uses the former method is referred to as the power set

system while the latter system is referred to as the multi-label system. Notice however that both systems
can be used to solve the same multi-label classification problem.

This section also makes use of an additional measure: the total accuracy. In contrast to the accuracy
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and the F1 score which are computed on a per-class basis, the total accuracy measures how often the
entire binary label vector y was correctly predicted. If, for example, the prediction is p = (1,0,0,1,1,1)
and the correct label is y = (1,0,0,1,1,0), the total accuracy would be 0 despite the fact that the classifier
“almost” got it right. It should be obvious from this example that the total accuracy is a rather harsh and
unforgiving measure. Only the total accuracy is used in this chapter.

During this section, the results of the two systems are first considered individually with a direct com-
parison following subsequently. Both systems were evaluated on the same dataset that was already used
for all other evaluations. A new permutation was used to initially shuffle the dataset. However, to make
the two systems comparable, the permutation was the same for both systems. Stratified 3-fold was used
to split the dataset into training and test folds. All measures were then computed over the combined test
splits.

From each section, the best results were used to perform the end-to-end evaluation. However, often
multiple configurations showed promise in which case the best couple of configurations were selected.
More concretely, the following best feature sets were selected from the results in section 6.3:

1. root_rot_norm

2. root_pos, root_vel, extremities_pos, root_rot and root_rot_norm

3. extremities_pos, root_rot and root_rot_norm

4. root_pos, root_vel, com_pos, extremities_pos, root_rot and root_rot_norm

5. root_vel, extremities_pos, root_rot and root_rot_norm

6. root_pos, root_vel, com_pos, extremities_pos, root_rot, root_rot_norm and marker_vel_norm

All features were normalized, smoothed with W = 3 and scaled to be in the interval [−1,1]. During this
evaluation, the feature sets will be referenced by their enumeration number.

Both HMMs and FHMMs were used during this evaluation. Since the results in section 6.4.3 clearly
showed that using FHMMs with more than two chains do not offer any significant advantage, only HMMs
and FHMMs with 2 chains were considered in the following evaluation. All HMMs were trained for
100 Baum-Welch iterations. The FHMMs were trained using the sequential training algorithm and 100
Baum-Welch iterations were performed per chain. The transition and start probabilities were initialized
uniformly whereas the emission distribution parameters were initialized using the k-means approach.
The covariance matrices were all constrained to be diagonal. The decision to only use this initialization
strategy was made based on the results in section 6.4.2 which showed that the other combinations do not
have any advantages.

For each of the four different topologies evaluated in section 6.4.1, the best number of states were
selected:

1. fully-connected topology and K = 8 states

2. left-to-right topology without ∆ constraint and K = 5 states

3. left-to-right topology with ∆ = 1 and K = 6 states

4. left-to-right topology with ∆ = 2 and K = 5 states

6.6.1 Power Set System

For the power set system, a total of 6 ·2 ·4 = 48 different configuration combinations were evaluated as
discussed above. Each combination of labels in the original dataset was replaced with a single substitute
label. Since 54 different combinations can be identified in the dataset (see section 6.2), a total of 54 of
such substitute labels were used. Analogously 54 HMMs or FHMMs (depending on the configuration)
were trained. Classification was then performed by selecting the model under which the unknown motion
had the highest likelihood. The 20 best results as measured by their F1 score are listed in table 6.9. The
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Feature Set Model Topology K F1 score Precision Recall Accuracy

2 HMM fully connected 8 0.9742 0.9797 0.9727 0.9780

4 HMM fully connected 8 0.9739 0.9788 0.9727 0.9780

6 FHMM fully connected 8 0.9736 0.9800 0.9727 0.9780

5 HMM fully connected 8 0.9723 0.9786 0.9709 0.9780

4 FHMM left-to-right ∆ = 1 6 0.9720 0.9777 0.9709 0.9780

6 FHMM left-to-right 5 0.9712 0.9774 0.9711 0.9802

6 FHMM left-to-right ∆ = 1 6 0.9712 0.9774 0.9711 0.9802

4 FHMM fully connected 8 0.9704 0.9762 0.9690 0.9736

5 FHMM left-to-right ∆ = 1 6 0.9675 0.9736 0.9672 0.9758

6 FHMM left-to-right ∆ = 2 5 0.9672 0.9752 0.9674 0.9780

6 HMM fully connected 8 0.9667 0.9735 0.9653 0.9736

5 HMM left-to-right ∆ = 1 6 0.9656 0.9740 0.9625 0.9714

5 FHMM fully connected 8 0.9653 0.9737 0.9653 0.9736

4 HMM left-to-right ∆ = 1 6 0.9651 0.9737 0.9635 0.9714

2 FHMM fully connected 8 0.9632 0.9705 0.9635 0.9714

6 HMM left-to-right ∆ = 1 6 0.9632 0.9709 0.9616 0.9714

2 FHMM left-to-right ∆ = 2 5 0.9615 0.9715 0.9600 0.9714

3 HMM fully connected 8 0.9615 0.9709 0.9580 0.9648

5 FHMM left-to-right 5 0.9610 0.9721 0.9600 0.9714

4 FHMM left-to-right 5 0.9598 0.9678 0.9600 0.9692

Table 6.9: The 20 best configurations of the power set system as determined by their F1 score. For each
score, the best result is underlined. Accuracy lists the total accuracies.

F1 scores, precisions and recalls were averaged over all classes. Averaging is not necessary for the total
accuracy since this measure already considers all classes combined.

A first conclusion that can be drawn from the data is that the overall performance of the system is very
good. The best configuration achieved an F1 score of 0.9742 and a total accuracy of 0.9727. Another
important observation is that the precision and recall scores are nicely balanced across configurations,
hence the system does not show a bias towards the one or the other. No clear best option can be identified
for the different feature sets. Set 2, 4, 5 and 6 all delivered very good performance with feature set
3 doing slightly worse. However, feature set 1 performed very poorly, with not a single instance of
this configuration in the top 20. Another interesting result is that FHMMs did not provide a significant
advantage over HMMs. The best total accuracy was achieved by an FHMM whereas the best F1 score was
achieved by an HMM. As can be seen from the data, both HMMs and FHMMs achieved very similar
scores overall. Since FHMMs are computationally more expensive and more complex to implement,
HMMs should be preferred. Lastly, the different topologies and states did not have a big impact on the
performance. All different combinations appear in the top 20. However, it should be noted that the best
results were achieved with fully-connected HMMs and left-to-right FHMMs respectively. Despite this
apparent correlation, the effect on the overall performance is only very small.

Table 6.10 contains the detailed results for the configuration that achieved the best F1 score. Notice
again that multiple labels have been combined into a single substitute label. The data also shows that the
classification scores are consistently very high across all classes.
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Class F1 score Precision Recall

walk, turn-right 0.984 0.969 1.000
walk, turn-left 0.982 1.000 0.964
walk, speed-normal, direction-forward 0.900 0.900 0.900
walk, direction-forward, speed-slow 0.900 0.900 0.900
walk, direction-forward, speed-fast 1.000 1.000 1.000
walk, bend-left 1.000 1.000 1.000
walk, bend-right 1.000 1.000 1.000
push-recovery, direction-backward 1.000 1.000 1.000
direction-forward, push-recovery 0.941 1.000 0.889
push-recovery, direction-left 1.000 1.000 1.000
push-recovery, direction-right 1.000 1.000 1.000
walk, direction-circle, counter-clockwise 1.000 1.000 1.000
walk, direction-circle, clockwise 0.971 0.944 1.000
walk, direction-slalom 1.000 1.000 1.000
direction-forward, run 0.988 0.976 1.000
walk, direction-upward 1.000 1.000 1.000
kick, foot-right 0.933 1.000 0.875
throw, hand-right 0.909 0.833 1.000
throw, hand-left 1.000 1.000 1.000
bow, deep 1.000 1.000 1.000
bow, slight 0.889 1.000 0.800
kick, foot-right, high 0.909 0.833 1.000
kick, high, foot-left 1.000 1.000 1.000
kick, foot-right, low 1.000 1.000 1.000
kick, foot-left, low 1.000 1.000 1.000
squat 1.000 1.000 1.000
hand-right, punch 0.889 1.000 0.800
hand-left, punch 1.000 1.000 1.000
foot-right, stomp 1.000 1.000 1.000
foot-left, stomp 1.000 1.000 1.000
direction-upward, jump 0.889 1.000 0.800
direction-forward, jump 1.000 1.000 1.000
direction-backward, jump 1.000 1.000 1.000
direction-left, jump 0.909 0.833 1.000
direction-right, jump 1.000 1.000 1.000
golf, putting 1.000 1.000 1.000
golf, drive 1.000 1.000 1.000
hand-right, tennis, smash 1.000 1.000 1.000
hand-left, tennis, smash 1.000 1.000 1.000
hand-right, tennis, forehand 1.000 1.000 1.000
hand-left, tennis, forehand 1.000 1.000 1.000
hand-right, wave 0.909 0.833 1.000
hand-left, wave 1.000 1.000 1.000
wave, hand-both 1.000 1.000 1.000
hand-right, play-guitar 1.000 1.000 1.000
hand-left, play-guitar 1.000 1.000 1.000
hand-right, play-violin 1.000 1.000 1.000
hand-left, play-violin 1.000 1.000 1.000
hand-right, stir 1.000 1.000 1.000
hand-left, stir 1.000 1.000 1.000
hand-right, wipe 0.889 1.000 0.800
hand-left, wipe 1.000 1.000 1.000
dance, waltz 1.000 1.000 1.000
dance, chachacha 1.000 1.000 1.000

Table 6.10: The results of the power set system on a per-class basis for the best combination.
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6.6.2 Multi-Label System

The multi-label system was evaluated similarly. However, this system requires more sophisticated deci-
sion makers to map the likelihood scores of the HMMs to the binary prediction vector. For each of the
previously evaluated decision makers, the best configurations (see section 6.5) was used:

1. Logistic Regression with L1 penalty and C = 10−3 using the binary relevance method

2. Support Vector Machine with L1 penalty and C = 10−2 using the binary relevance method

3. Decision Tree with information gain splitting criterion and a maximum depth of 15

4. Random Forest with information gain splitting criterion, a maximum depth of 15 and 40 internal
Decision Trees

Additionally, two much simpler decision makers were evaluated as well: The zero decision maker always
predicts all classes that correspond to HMMs with a likelihood score greater than or equal to zero. The
maximum decision maker works as described in the previous section by always selecting only a single
class which corresponds to the HMM with the highest likelihood. Therefore a total of 6 · 2 · 4 · 6 = 288
different configuration combinations were evaluated as discussed above. Since 49 different classes exist
(see section 6.2) a total of 49 HMMs or FHMMs (depending on the configuration) were trained. Classi-
fication was then performed using the decision maker of the respective configuration. The 20 best results
as measured by their F1 score are listed in table 6.11.

F.-Set Model Topology K Decision Maker F1 score Precision Recall Accuracy

5 HMM left-to-right ∆ = 2 5 Logistic Regression 0.9662 0.9680 0.9662 0.9229

2 HMM left-to-right ∆ = 2 5 Logistic Regression 0.9660 0.9642 0.9696 0.9229

4 HMM left-to-right 5 Logistic Regression 0.9634 0.9598 0.9690 0.9229

2 HMM left-to-right ∆ = 1 6 Logistic Regression 0.9631 0.9629 0.9660 0.9339

5 HMM left-to-right 5 Logistic Regression 0.9628 0.9635 0.9652 0.9207

5 HMM left-to-right 5 SVM 0.9628 0.9595 0.9691 0.9031

2 FHMM left-to-right ∆ = 1 6 Logistic Regression 0.9627 0.9692 0.9603 0.9295

4 HMM left-to-right ∆ = 2 5 Logistic Regression 0.9621 0.9576 0.9682 0.9229

5 FHMM fully-connected 8 Logistic Regression 0.9620 0.9647 0.9620 0.9207

6 HMM left-to-right ∆ = 1 6 SVM 0.9618 0.9533 0.9735 0.9163

5 HMM left-to-right ∆ = 2 5 SVM 0.9616 0.9576 0.9694 0.9097

5 FHMM left-to-right ∆ = 2 5 Logistic Regression 0.9610 0.9651 0.9616 0.9251

2 FHMM left-to-right ∆ = 2 5 Logistic Regression 0.9609 0.9640 0.9618 0.9229

6 FHMM left-to-right ∆ = 1 6 Logistic Regression 0.9600 0.9674 0.9564 0.9273

5 HMM left-to-right ∆ = 1 6 Logistic Regression 0.9597 0.9694 0.9531 0.9141

5 FHMM left-to-right 5 Logistic Regression 0.9595 0.9628 0.9617 0.9207

2 FHMM fully-connected 8 Logistic Regression 0.9592 0.9632 0.9599 0.9163

6 HMM left-to-right ∆ = 2 5 Logistic Regression 0.9590 0.9526 0.9682 0.9251

6 HMM fully-connected 8 Logistic Regression 0.9586 0.9661 0.9576 0.9185

2 HMM left-to-right ∆ = 1 6 SVM 0.9578 0.9567 0.9632 0.9097

Table 6.11: The 20 best configurations of the multi-label system as determined by their F1 score. For
each score, the best result is underlined. Accuracy lists the total accuracies.
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The results of the multi-label system are also very good. The best achieved F1 score was 0.9662 with
the best total accuracy at 0.9339. Precision and recall are once again balanced, so a bias towards one
or the other does not exist. An important observation is that HMMs slightly outperform FHMMs. In
general FHMMs do not offer any noticeable advantage of HMMs on this dataset. Another result is that
the left-to-right topologies dominate the top 20 results. However, since the F1 scores are still very similar
across topologies, they are still not very important for the overall performance of the classifier. Similar
to the previously discussed system, the feature sets 2, 4, 5 and 6 all achieve good results. Feature set 1
and 3 did not make it into the top 20. The best achieved F1 score for feature set 3 was 0.9513 and for the
first set the best score was 0.5084. Again, feature set 1 is obviously not a good choice.

A very important aspect of the classifier is the choice of the decision maker. As can be seen from
the above results, the top 20 best scores were all achieved using either Logistic Regression or Support
Vector Machines. Logistic Regression consistently outperformed SVMs but the effect on the F1 score
is very small. The best achieved F1 score for Random Forests was 0.9029 and the best score using
Decision Trees was 0.8799. In general, the results are consistent with the results of section 6.5. The
best maximum decision maker achieved an F1 score of 0.7248. It should be noted however that the total
accuracy dropped to an abysmal score of 0.0110. This result makes sense since the maximum decision
maker only selects a single class but most motions belong to multiple classes. This results in a somewhat
decent F1 score since the prediction likely contains one correct label. However, a prediction made by
the maximum decision maker can only be completely correct if a motion only has a single label–which
is not the case for most motions in the dataset. The zero decision maker finally achieved an F1 score of
0.3711 and a total accuracy of 0.2445. To summarize, a linear model is obviously the best choice for the
decision maker. Logistic Regression proved to perform especially well.

Similar to the previous section, table 6.12 (at the very end of this section) contains a more detailed
characterization of the best classifier configuration as measured by the F1 score. Overall, the F1 score is
consistently high across classes.

6.6.3 Comparison

Both systems did not benefit from the use of FHMMs in any significant way. Additionally, feature sets
2, 4, 5 and 6 proofed to be good choices for either system. The choice of topology and number of states
did not have a significant effect on the performance although the left-to-right topology achieved better
results in the multi-label system.

The power set system achieved an F1 score of 0.9742 whereas the multi-label system achieved 0.9662.
A more significant difference can be seen in the total accuracy: 0.9802 was the best achieved score for
the power set system whereas the multi-label system achieved 0.9339. It is interesting that the F1 scores
are relatively similar whereas there’s a noticeable difference in total accuracy. An explanation for these
results is that the power set system is less likely to make a mistake since only ever one label is selected.
Since most labels are properly recognized, the total accuracy is very high. In general, the power set
system can only get a prediction right or wrong. The multi-label system on the other hand has a trickier
job: The system does not know in advance how many labels a motion has. This additional uncertainty
results in a slightly worse total accuracy. This means that the system will produce some predictions that
are “almost right”. However, these are counted as wrong by the total accuracy, resulting in a worse score.
In summary the recognition performance across classes is similar for both systems, hence the F1 score is
also very similar. Due to the difference in how the prediction is made, the total accuracy varies. However,
it is important to stress that the superior performance of the power set method is bought with additional
resources: Since each label combination is treated as a single substitute label, more HMMs need to be
kept in memory. During classification of an unknown motion, the likelihoods under each HMM must be
evaluated, resulting in higher computational complexity. Additionally, sparse training data can become a
problem (also see discussion in chapter 5.3.1).

On this dataset, the power set system does not run into any of these problems since only 54 label
combinations exist and enough training data is available per combination. However, as the dataset grows
and more and more label combinations become possible, the power set method will eventually become
infeasible. The multi-label system does not have this problem and therefore certainly has its place.
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Class F1 score Precision Recall

walk 1.000 1.000 1.000
turn-right 1.000 1.000 1.000
turn-left 0.982 1.000 0.964
speed-normal 0.700 0.700 0.700
direction-forward 0.988 0.977 1.000
speed-slow 0.857 0.818 0.900
speed-fast 1.000 1.000 1.000
bend-left 1.000 1.000 1.000
bend-right 1.000 1.000 1.000
push-recovery 1.000 1.000 1.000
direction-backward 0.963 1.000 0.929
direction-left 0.968 0.938 1.000
direction-right 1.000 1.000 1.000
direction-circle 1.000 1.000 1.000
counter-clockwise 1.000 1.000 1.000
clockwise 1.000 1.000 1.000
direction-slalom 0.981 1.000 0.963
run 0.964 0.952 0.976
direction-upward 1.000 1.000 1.000
kick 1.000 1.000 1.000
foot-right 0.979 0.958 1.000
throw 0.857 0.818 0.900
hand-right 0.989 1.000 0.978
hand-left 0.989 1.000 0.979
bow 1.000 1.000 1.000
deep 0.909 0.833 1.000
slight 1.000 1.000 1.000
high 1.000 1.000 1.000
foot-left 0.933 0.933 0.933
low 1.000 1.000 1.000
squat 0.909 0.833 1.000
punch 0.952 0.909 1.000
stomp 0.952 0.909 1.000
jump 0.962 0.926 1.000
golf 1.000 1.000 1.000
putting 1.000 1.000 1.000
drive 0.923 0.857 1.000
tennis 0.923 0.947 0.900
smash 0.842 0.889 0.800
forehand 0.778 0.875 0.700
wave 1.000 1.000 1.000
hand-both 1.000 1.000 1.000
play-guitar 1.000 1.000 1.000
play-violin 1.000 1.000 1.000
stir 0.800 0.889 0.727
wipe 0.857 0.900 0.818
dance 1.000 1.000 1.000
waltz 1.000 1.000 1.000
chachacha 1.000 1.000 1.000

Table 6.12: The results of the multi-label system on a per-class basis for the best combination.
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7 Conclusion

The goal of this thesis was to develop a system that can accurately classify human whole-body motion.
A key consideration was that multiple labels are needed to describe a single motion. During the course of
this work, the different parts necessary to perform multi-label classification were introduced, discussed
and evaluated. An especially important aspect of this thesis was the discussion of different represen-
tations of the motions as features as well as the extraction of novel features from the raw data. The
section on how multi-label classification can be performed was equally important to achieve the required
multi-label classification. Two different systems were discussed: The power set system transforms the
multi-label problem to a single-label problem by treating each label combination as a substitute class.
The multi-label system was developed using an approach novel in the field of motion recognition for
robotics that truly handles multi-label problems1.

The systems and their components were evaluated using a dataset that consists of 454 motions. 49
different labels were used to describe each motion with 54 unique label combinations. Due to the high
number of parameters and components, individual building blocks of the system were evaluated and
optimized in isolation before an end-to-end evaluation of the whole proposed approach was conducted.

First, feature selection was performed to find the best set of features. An important insight was that
the joint angles and marker positions are not necessary to recognize the different motions. Instead the
root position, root velocity, root rotation and the positions of the subject’s extremities proved to be an
especially good set of features.

Different configurations and variations of HMMs were evaluated. The main results of this section
were that proper initialization of the emission distribution parameters is very important; less so the ini-
tialization of the transition and start probabilities. The best results were achieved when the means and
covariance matrices over the emission distribution were initialized by first clustering the data using the
k-means algorithm and then estimating the means and covariances over these clusters. It further proved
necessary to constrain the covariance matrices to be diagonal. Different topologies and numbers of states
were evaluated as well. While a low number of states (5 to 8) produced the best results, the choice of
topology was less important. However, the left-to-right topology proved to be a good choice overall. The
performance of FHMMs and HMMs was also compared. FHMMs did not provide a significant advan-
tage over HMMs for motion classification on the evaluation dataset. Since FHMMs are computationally
more expensive to train and evaluate, HMMs are the better choice for both systems.

Different decision makers which map the likelihood scores of the HMMs to the multi-label prediction
and their hyperparameters were evaluated as well. In general, linear models, namely Logistic Regression
and Support Vector Machines, proved to be especially good choices. Logistic Regression was further
shown to slightly outperform SVMs on the evaluation dataset. An important insight was that both models
worked well if L1 regularization was used. The best regularization coefficients were C = 10−3 and
C = 10−2 for Logistic Regression and SVMs respectively. Decision Trees and Random Forests were also
evaluated. Both were capable of learning the multi-label mapping from likelihoods to labels and Random
Forests outperformed a single Decision Tree. The best splitting criterion turned out to be the information
gain and a maximum tree depth of 15 delivered consistently good results. 40 Decision Trees were used in
a Random Forest to achieve good results. However, the linear models clearly outperformed the Decision
Tree and Random Forest during evaluation.

The end-to-end evaluation of the two systems revealed that both can be used to accurately classify
human whole-body motion into multiple classes. The power set system achieved a total accuracy of
98.02% on the test dataset whereas the multi-label system achieved 93.39%. However, while the power
set is limited by the number of label combinations within a dataset, the multi-label system does not have

1based upon fundamental research from the field of machine learning
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this constraint. This makes the multi-label system a potentially very interesting approach for classifica-
tion tasks where the number of label combinations is much greater than the number of labels.

In future work, the system devised in this thesis could be extended in a couple of ways. An interesting
extensions would be Parametric Hidden Markov Models. PHMMs could be used similarly to the work
in [HUK08] to recognize different variations of the same motion. More concretely, instead of using
different HMMs for the classes “fast”, “medium” and “slow”, a single PHMM could potentially be used
to replace three HMMs.

Another extension would be to use a hierarchical tree structure of HMMs similar to [KTN08]. This
tree structure would have several advantages: Most importantly, the classification speed could be re-
duced if not all but only a couple of HMMs need to be considered for each unknown motion. However,
while traversing the tree from root to leaf is trivial for single-label classification, it becomes less obvious
how the tree search could be realized for a multi-label problem. A first idea would be to use supervised
learning to not only train the HMMs but to also learn rules when to cut off a subtree from further consid-
eration. Using a tree structure would also allow to use a hybrid of HMMs and FHMMs. The sequential
learning algorithm could then be used to train additional chains if and only if necessary.

Bayesian optimization is an interesting topic that could be used to find better feature subsets simi-
lar to the work in [ILES00]. The same basic idea can be applied to tune the hyperparameters of the
classifier [SLA12].

The two systems could also be further evaluated on a larger dataset with more motions performed
by more subjects. An especially interesting evaluation would be on a dataset where much more label
combinations than labels exist. On such a dataset, the multi-label system could potentially outperform
the power set system due to the high number of label combinations. Additionally, the effect of sparse
training data could be evaluated properly on such a dataset.

Lastly, the developed system could be deployed for usage in the KIT Whole-Body Human Motion
Database. The system could then be used to automatically label new motion data and maybe even to
detect inconsistencies in the already labeled data. Furthermore, the integration would offer interesting
insights on how the system performs on a real-world problem. Additional considerations would be how
the system could be integrated into the existing database source code as well as adding user interface
elements to check and, if necessary, correct the predictions of the classifier.
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[BPPŠ14] Jan Babič, Tadej Petrič, Luka Peternel, and Nejc Šarabon. Effects of supportive hand contact
on reactive postural control during support perturbations. Gait & posture, 40(3):441–446,
2014. 3

[BPSW70] Leonard E Baum, Ted Petrie, George Soules, and Norman Weiss. A maximization technique
occurring in the statistical analysis of probabilistic functions of markov chains. The annals

of mathematical statistics, pages 164–171, 1970. 10, 23

[Bre01] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001. 28, 47

[BS+68] Leonard E Baum, George R Sell, et al. Growth transformations for functions on manifolds.
Pacific J. Math, 27(2):211–227, 1968. 10

[c3d] The C3D file format. http://c3d.org. [accessed May 20th 2015]. 6

Classification of Human Whole-Body Motion using Hidden Markov Models

http://c3d.org


Page 58 Bibliography

[CGB07] Sylvain Calinon, Florent Guenter, and Aude Billard. On learning, representing, and gener-
alizing a task in a humanoid robot. Systems, Man, and Cybernetics, Part B: Cybernetics,

IEEE Transactions on, 37(2):286–298, 2007. 3

[Cra05] John J Craig. Introduction to robotics: mechanics and control, volume 3. Pearson Prentice
Hall Upper Saddle River, 2005. 15

[DRE+00] Rüdiger Dillmann, Oliver Rogalla, Markus Ehrenmann, R Zollner, and Monica Bordegoni.
Learning robot behaviour and skills based on human demonstration and advice: the ma-
chine learning paradigm. In ROBOTICS RESEARCH-INTERNATIONAL SYMPOSIUM-,
volume 9, pages 229–238, 2000. 3

[EAM08] Robert J Elliott, Lakhdar Aggoun, and John B Moore. Hidden Markov models: estimation

and control, volume 29. Springer Science & Business Media, 2008. 8

[Efr79] Bradley Efron. Bootstrap methods: another look at the jackknife. The annals of Statistics,
pages 1–26, 1979. 47

[FCH+08] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin. Liblin-
ear: A library for large linear classification. The Journal of Machine Learning Research,
9:1871–1874, 2008. 44

[GE03] Isabelle Guyon and André Elisseeff. An introduction to variable and feature selection. The

Journal of Machine Learning Research, 3:1157–1182, 2003. 33, 34

[GJ97] Zoubin Ghahramani and Michael I Jordan. Factorial hidden markov models. Machine

learning, 29(2-3):245–273, 1997. 11, 24, 30

[GS+84] Clark R Givens, Rae Michael Shortt, et al. A class of wasserstein metrics for probability
distributions. Michigan Math. J, 31(2):231–240, 1984. 34

[HAHR01] Xuedong Huang, Alex Acero, Hsiao-Wuen Hon, and Raj Reddy. Spoken language pro-

cessing: A guide to theory, algorithm, and system development. Prentice Hall PTR, 2001.
41

[HDO+98] Marti A. Hearst, Susan T Dumais, Edgar Osman, John Platt, and Bernhard Scholkopf. Sup-
port vector machines. Intelligent Systems and their Applications, IEEE, 13(4):18–28, 1998.
27, 44

[HUK08] Dennis Herzog, AleNs Ude, and Volker Krüger. Motion imitation and recognition using
parametric hidden markov models. In Humanoid Robots, 2008. Humanoids 2008. 8th IEEE-

RAS International Conference on, pages 339–346. IEEE, 2008. 4, 56

[ice] The Internet Communications Engine (Ice). https://zeroc.com/ice.html. [ac-
cessed May 22th 2015]. 8

[ILES00] Iñaki Inza, Pedro Larrañaga, Ramón Etxeberria, and Basilio Sierra. Feature subset selection
by bayesian network-based optimization. Artificial intelligence, 123(1):157–184, 2000. 56

[JJT02] Robert A Jacobs, Wenxin Jiang, and Martin A Tanner. Factorial hidden markov models and
the generalized backfitting algorithm. Neural computation, 14(10):2415–2437, 2002. 12,
25

[Jor02] A Jordan. On discriminative vs. generative classifiers: A comparison of logistic regression
and naive bayes. Advances in neural information processing systems, 14:841, 2002. 27

[KHB+10] Volker Krüger, Dennis L Herzog, Sanmohan Baby, Ales Ude, and Danica Kragic. Learning
actions from observations. Robotics & Automation Magazine, IEEE, 17(2):30–43, 2010. 4

Classification of Human Whole-Body Motion using Hidden Markov Models

https://zeroc.com/ice.html


Bibliography Page 59

[KMN+02] Tapas Kanungo, David M Mount, Nathan S Netanyahu, Christine D Piatko, Ruth Silverman,
and Angela Y Wu. An efficient k-means clustering algorithm: Analysis and implementation.
Pattern Analysis and Machine Intelligence, IEEE Transactions on, 24(7):881–892, 2002. 23,
40
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