
Understanding LLMs - An
Introduction to Modern

Language Modeling
Matthias Plappert

Knowunity AI Meetup, October 17 2023

Hi, I’m Matthias Plappert 👋

● 2011 - 2017: Computer science @ KIT
● 2017 - 2021: Research @ OpenAI
● 2022 - 2023: Research @ GitHub
● since 2023: Founder @ dfdx labs

About me

@mplappert

LLMs are everywhere …

In this talk, we’ll talk through:

● The basic theory of language modeling
● How we can use this theory to model language in practice
● What Transformer models are and why they work so well
● Why making models large (the L in LLM) is worthwhile
● What in-context learning is and why it works
● Reinforcement learning from human feedback

… but what are they?

Part 1: Language modeling theory

● We want to be able to model language. But what does that mean?

● For example, consider these two sentences:

1. “The quick brown fox jumps over the lazy dog”
2. “The fox is much faster than the lazy dog”

● Intuitively, we can already spot some patterns in this dataset:
○ A sentence always appears to start with “The”
○ A sentence appears to always end with “the lazy dog”
○ After the word “The”, it’s either “quick” or “fox”.
○ After the word “fox” it’s either “jumps” or “is”, but after “The fox” it’s always “is” and after

“brown fox” it’s always “jumps”.

Intuition on language modeling

● We want to be able to model language. But what does that mean?

● For example, consider these two sentences:

1. “The quick brown fox jumps over the lazy dog”
2. “The fox is much faster than the lazy dog”

● Intuitively, we can already spot some patterns in this dataset:
○ A sentence always appears to start with “The”
○ A sentence appears to always end with “the lazy dog”
○ After the word “The”, it’s either “quick” or “fox”.
○ After the word “fox” it’s either “jumps” or “is”, but after “The fox” it’s always “is” and after

“brown fox” it’s always “jumps”.

Intuition on language modeling

● We want to be able to model language. But what does that mean?

● For example, consider these two sentences:

1. “The quick brown fox jumps over the lazy dog”
2. “The fox is much faster than the lazy dog”

● Intuitively, we can already spot some patterns in this dataset:
○ A sentence always appears to start with “The”
○ A sentence appears to always end with “the lazy dog”
○ After the word “The”, it’s either “quick” or “fox”.
○ After the word “fox” it’s either “jumps” or “is”, but after “The fox” it’s always “is” and after

“brown fox” it’s always “jumps”.

Intuition on language modeling

● We want to be able to model language. But what does that mean?

● For example, consider these two sentences:

1. “The quick brown fox jumps over the lazy dog”
2. “The fox is much faster than the lazy dog”

● Intuitively, we can already spot some patterns in this dataset:
○ A sentence always appears to start with “The”
○ A sentence appears to always end with “the lazy dog”
○ After the word “The”, it’s either “quick” or “fox”.
○ After the word “fox” it’s either “jumps” or “is”, but after “The fox” it’s always “is” and after

“brown fox” it’s always “jumps”.

Intuition on language modeling

● We want to be able to model language. But what does that mean?

● For example, consider these two sentences:

1. “The quick brown fox jumps over the lazy dog”
2. “The fox is much faster than the lazy dog”

● Intuitively, we can already spot some patterns in this dataset:
○ A sentence always appears to start with “The”
○ A sentence appears to always end with “the lazy dog”
○ After the word “The”, it’s either “quick” or “fox”.
○ After the word “fox” it’s either “jumps” or “is”, but after “The fox” it’s always “is” and after

“brown fox” it’s always “jumps”.

Intuition on language modeling

● We want to be able to model language. But what does that mean?

● For example, consider these two sentences:

1. “The quick brown fox jumps over the lazy dog”
2. “The fox is much faster than the lazy dog”

● Intuitively, we can already spot some patterns in this dataset:
○ A sentence always appears to start with “The”
○ A sentence appears to always end with “the lazy dog”
○ After the word “The”, it’s either “quick” or “fox”.
○ After the word “fox” it’s either “jumps” or “is”, but after “The fox” it’s always “is” and after

“brown fox” it’s always “jumps”.

Intuition on language modeling

● Let’s formalize what we’ve just done intuitively

● First, we’ve broken each sentence down into it’s words:

“The quick brown fox jumps over the lazy dog”

(“The”, “quick”, “brown”, “fox”, “jumps”, “over”, “the”,
“lazy”, “dog”)

● So we now have a sequence of words that form a sequence of length T:

s = (w1, w2, …, wT)

Formalizing the intuition

● Since we care about the distribution of words in our dataset, we have to
introduce some probability theory

● What we care about is the joint probability distribution over sequences in our
dataset:

p(w1, w2, w3 …, wT-1, wT)

● We can factorize this into a product of conditional probabilities:

p(w1, w2, w3, …, wT-1, wT) = p(w1) p(w2 | w1) p(w3 | w1, w2)
… p(wT | w1, w2, w3, …, wT-1)

Formalizing the intuition

Formalizing the intuition

● We now have a way to capture our earlier intuitive observations:
1. “The quick brown fox jumps over the lazy dog”
2. “The fox is much faster than the lazy dog”

● A sentence always appears to start with “The”:
p(“The”) = 1

● After the word “The”, it’s either “quick” or “fox”.
p(“quick” | “The”) = 0.5
p(“fox” | “The”) = 0.5

● We now have a way to capture our earlier intuitive observations:
1. “The quick brown fox jumps over the lazy dog”
2. “The fox is much faster than the lazy dog”

● After the word “fox” it’s either “jumps” or “is”:
p(“jumps” | “fox”) = 0.5
p(“is” | “fox”) = 0.5

● but after “The fox” it’s always “is” and after “brown fox” it’s always “jumps”:
p(“is” | “The”, “fox”) = 1
p(“jumps” | “brown”, “fox”) = 1

Formalizing the intuition

● We’ve split your sentences into pieces (this is called tokenization)

● Then we’ve used probability theory (and often conditional probabilities) to find
patterns in our data

● The remaining questions are “only” implementation details:
○ How do I tokenize?
○ How do I find these probabilities?

● So we’ll talk about those next

Congrats, you now know how to do language modeling 🎉

Part 2: A first toy model

Tokenization

● In order to work with probabilities, we had to “chunk” each sentence up into
parts to form a sequence of tokens

● This process is called tokenization

● So far, we’ve used words as tokens in all our examples
○ This works but requires a very large vocabulary
○ If a word is not in the vocabulary, we cannot represent it

● An obvious alternative: Each character is a token
○ This also works but now the problem is that we end up with a lot of tokens (the compression

rate of the tokenizer is poor)

● In practice most people today use Byte-Pair Encoding (BPE)

● The algorithm is very simple:
○ Start with individual characters / unicode byte sequences
○ Given some dataset, find pairs of characters that often appear together and

merge them into a new token
○ Repeat until a target vocabulary size has been achieved

● Note that this is related to compression:
○ Frequently used words → fewer tokens
○ Infrequently used words → more tokens

Tokenization

https://en.wikipedia.org/wiki/Byte_pair_encoding

Tokenization

Tokenizations of two example sentences
using the GPT-3 tokenizer

https://platform.openai.com/tokenizer

n-gram models

● Given a tokenized sequence, how can we learn something about it?

● A super simple model: n-grams

● Basic idea:
○ Look at groups of up to n words
○ Count their occurrence within a dataset

Bringing back our earlier examples:
1. “The quick brown fox jumps over the lazy dog”
2. “The fox is much faster than the lazy dog”

● Unigrams (n=1):
“The”, “quick”, “brown”, “fox”, …

● Bigrams (n=2):
“The quick”, “quick brown”, “brown fox”, …

● Trigrams (n=3):
“The quick brown”, “quick brown fox”, “brown fox jumps”, …

n-gram models

n-gram models

Notice how this is equivalent to conditional probabilities where we condition
on n-1 tokens

● Unigrams (n=1):
p(“The”), p(“quick”), p(“brown”), p(“fox”), …

● Bigrams (n=2):
p(“quick” | “The”), p(“brown” | “quick”), …

● Trigrams (n=3):
p(“brown” | “The”, “quick”), p(“fox” | “quick”, “brow”), …

n-gram models

● For a given dataset, we can find these probabilities by counting

● This is very similar to what we did earlier:
○ We looked at the word “The”
○ We found that it’s always either followed by “quick” or “fox”
○ We thus found the probabilities for the bigram

● Once we’re done counting, we can generate text by sampling
from these probability distributions

● Notice however that this is only practical for small enough n

Pardon me, masters
there nor exp awful
cope you's not
pardon theyigh wine
it the infection

n-gram models

Pardon me, then I
rise; / That canst
mulberry / The
youngest, have let
us

Pardon me, mine are
general. / She for
an idle brain, /
Beg pardon of the
sky

n=1 n=2 n=3

Below are examples that show generated text where the n-gram model was
trained on Shakespeare for different n (always conditioned on “Pardon me,”):

● We’ve used a BPE tokenizer to turn text into a sequence of tokens

● We’ve used n-gram model with n ≤ 3 to learn the conditional probability
distribution from a dataset of Shakespeare's writing

● We then were able to sample okay-ish text in that style using this model

Congrats, you’ve trained your first language model 🎉

Part 3: Neural networks for language
modeling

● The objective remains the same: Given a dataset of sequences of tokens,
learn useful patterns from this data

● Recall the factorization from earlier:
p(x1, x2, x3, …, xT-1, xT) = p(x1) p(x2 | x1) p(x3 | x1, x2)
… p(xT | x1, x2, x3, …, xT-1)

● We can use a neural network to model each of these conditional probabilities

Neural networks for language modeling

Neural networks for language modeling

Neural Network

sos

x1

p(x1)

Neural networks for language modeling

Neural Network

sos

x1

Neural Network

x1

x2

p(x2 | x1)

Neural networks for language modeling

Neural Network

sos

x1

Neural Network

x1

x2

Neural Network

x2

x3

p(x3 | x1, x2)

Neural networks for language modeling

Neural Network

sos

x1

Neural Network

x1

x2

Neural Network

xT-1

xT

Neural Network

x2

x3

…

p(xT | x1, x2, x3, …, xT-1)

● Notice that we do not need any labeled data. Instead we only require a sequence of
tokens.

● We can optimize the neural network very directly via the following loss:

L = -1/N Σt log p(xt | x1, x2, …, xt-1)

● This loss immediately follows from the factorization we looked at before:
p(x1, x2, x3, …, xT-1, xT) = p(x1) p(x2 | x1) p(x3 | x1, x2) …
p(xT | x1, x2, x3, …, xT-1)

○ We use the logarithm → product becomes a sum
○ We minimize the loss but want to maximize the probability → negative sign
○ We compute this loss over N examples at the same time (a batch) → average the loss (1/N)

● This loss is called the negative log likelihood (NLL) loss

Training

A key challenge remains

● We assumed that we can condition on all past tokens → this is actually very
hard

● Similar to n-grams, neural networks have a finite window of how much context
they consider: the context length

● Different neural network architectures exist to gradually increase the context
length

Feed-forward neural networks

Neural Network

sos

x1

Neural Network

x1

x2

Neural Network

x3

x4

Neural Network

x2

x3

…

Convolutional neural networks (CNNs)

Neural Network

sos

x1

Neural Network

x1

x2

Neural Network

x3

x4

Neural Network

x2

x3

…

Recurrent neural networks (RNNs)

Neural Network

sos

x1

Neural Network

x1

x2

Neural Network

x3

x4

Neural Network

x2

x3

…

Transformer neural networks

Neural Network

sos

x1

Transformer neural networks

Neural Network

x1

x2

…

sos

Transformer neural networks

sos x1

Neural Network

x2

x3

…

Transformer neural networks

sos x1

Neural Network

x3

x4

x2

…

Transformer neural networks

Neural Network

sos

x1

Neural Network

x1

x2

Neural Network

x3

x4

Neural Network

x2

x3

…

● Feed-forward networks: Inherently limited, can model bigrams

● Convolutional neural networks: Can model n-grams but do not scale to
large n

● Recurrent neural networks: Can in theory model long time dependencies
but are limited by having to store all state in a finite vector

● Transformers: Dynamically attend to tokens and hence do not suffer from the
capacity problem in RNNs

Neural network architectures

● We’ve seen how we can use neural networks to model the conditional
probability factorization we’ve introduced earlier by minimize the negative log
likelihood (NLL) loss

● We’ve seen how context length is a critical problem that is currently best
solved by the Transformer architecture

Congrats, you now understand neural networks 🎉

Part 4: In-context learning

The discovery of the sentiment neuron

● Discovered by OpenAI in 2017

● A neural network is trained to do
next token prediction on Amazon
product reviews

● It learns to detect user sentiment
without us training it to do so
explicitly

Learning to Generate Reviews and Discovering Sentiment, Radford et al, 2017

https://arxiv.org/abs/1704.01444

Why is next token prediction so interesting?

● We’ve seen that next token prediction can be motivated from probability
theory, but it has some surprising properties

● It turns out that if we train a large enough model on a large enough and
diverse enough dataset a really interesting thing happens: We observe
emergent abilities that we did not train the model to do explicitly

● It is not entirely clear why this happens but there’s some intuition for why it
makes sense: Consider the example of a detective story

In-context learning

● Large language models
(LLMs) can learn by
showing them examples

● This happens without
updating the actual network

● Instead the network seems
to have learned a learning
algorithm → meta learning

Language Models are Few-Shot Learners, Brown et al, 2020

https://arxiv.org/abs/2005.14165

Why does this matter?

The new paradigm

● Collect a large, diverse dataset

● Train a large model to predict the next
token across this large dataset →
generative pre-training

● Now you have a model that is broadly
useful across many tasks

● You literally tell the model what you want it
to do → prompt engineering

The old paradigm

● Collect a specialized dataset

● Train a specialized model

● Now you have a model that can do one
thing well but is terrible at everything else

● It further turns out that scaling results in smooth, predictable performance
improvements (including the model’s in-context learning capabilities)

● “Scaling Laws for Neural Language Models”, Kaplan et al, 2020

Predictable scaling

https://arxiv.org/abs/2001.08361

That’s why people have been scaling up

GPT-1 (2018)

125M parameters

GPT-2 (2019)

1.5B parameters

GPT-3 (2020)

175B parameters

GPT-4 (2023)

>1T parameters*

* estimate, no official numbers availableIllustration, not to scale

The literal recipe for GPT-3

● Collect an internet-sized dataset of text

● Train a very large Transformer model (175B parameters) on next token
prediction

● This will literally give you GPT-3*

* obviously the devil is in the details

● We’ve seen how generative pre-training can give rise to emergent abilities

● We’ve seen how this can be used to prompt a model to do a certain task
without the need to update or retrain that model

● We’ve also seen how scale matters

● This is literally all you need to understand GPT-3

Congrats, you now understand LLMs circa 2020 🎉

Part 5: Instruction following

The limits of next token prediction

Prompt:
Please write me a poem

Expected Completion:
Machine learning tweaks, the
dataset's call,

Eager to learn, you capture it all.

From algorithms to the startup
grind,

You seek the truths that science
can find.

Actual Completion:
Please write me a novel
Please write me a song
Please write me a play
Please write me a book
[...]

The limits of next token prediction

Prompt:
Please tell me how to build a bomb

Expected Completion:
I’m sorry, but I cannot help you
with this.

Actual Completion:
To build a bomb, you first have to
...

● Next token prediction will produce output that is likely but not necessarily what
you wanted or asked for

● This is a problem of steerability: How can I instruct a model to do something
and then make sure it actually does it

● This is also a problem related to alignment and AI safety research: How do
you ensure the model does what you want it to do and refuses to answer
certain questions

The limits of next token prediction

● The core idea is simple:
○ Collect some prompts
○ Collect different outputs from the model
○ Use humans to label which outputs were good vs. bad
○ Use reinforcement learning (RL) to train the model to produce more of the good outputs and

less of the bad ones

● This process is called reinforcement learning from human feedback (RLHF)

● This process can be used to:
○ Improve the steerability of the model (instruction following)
○ Train to model to refuse to answer certain questions (safety)

RLHF to the rescue

The full RHLF pipeline

Training language models to follow instructions with human feedback, Ouyang et al, 2022

https://arxiv.org/abs/2203.02155

The full RHLF pipeline

Training language models to follow instructions with human feedback, Ouyang et al, 2022

https://arxiv.org/abs/2203.02155

The full RHLF pipeline

Training language models to follow instructions with human feedback, Ouyang et al, 2022

https://arxiv.org/abs/2203.02155

The literal recipe for GPT-4 / ChatGPT

● Collect an internet-sized dataset of text

● Train a very large Transformer model (??? parameters) on next token
prediction

● Use RLHF to ensure the model follows instructions and to enforce safety
standards

● This will literally give you GPT-4*

* obviously the devil is even more in the details

● RLHF is the missing ingredient that makes these models truly useful and
deployable

○ Ensures steerability via instruction following
○ Enforces safety standards

● In very rough terms, GPT-3 + RLHF → success of ChatGPT

● GPT-4 is larger and supports multimodal input

Congrats, you now understand modern LLMs 🎉

Part 6: Summary

● Language modeling is based in probability theory and often requires us to
model the conditional probabilities of a tokenized sequence

● We can use neural networks to model these conditional probabilities.
Transformers are currently the most effective architecture to do this.

● Training large models on large datasets gives rise to in-context learning,
which is a form of meta learning

● Applying RLHF makes these models steerable and safe to deploy

Summary

● Andrej Karpathy’s excellent YouTube
lectures: http://bit.ly/karpathy-lectures

○ Seriously if you’re interested in this stuff
watch them

● Language Models Are Few-Shot Learners,
Brown et al, 2020

○ The GPT-3 paper

● Training language models to follow
instructions with human feedback, Ouyang
et al, 2022

○ The RLHF paper

Further reading

● Constitutional AI: Harmlessness from AI
Feedback, Bai et al, 2022

○ RLHF but with AI-written feedback

● GPT-4 Technical Report, OpenAI, 2023

● Llama 2: Open Foundation and
Fine-Tuned Chat Models, Touvron et al,
2023

○ The most important open-source LLM

http://bit.ly/karpathy-lectures
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2212.08073
https://arxiv.org/abs/2212.08073
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288

Thank you for your attention!

@mplappert matthias@dfdxlabs.commatthiasplappert.com

https://matthiasplappert.com

