Understanding LLMs - An Introduction to Modern Language Modeling
 Matthias Plappert

Knowunity AI Meetup, October 172023

About me

Hi, I'm Matthias Plappert ©

- 2011-2017: Computer science @ KIT
- 2017-2021: Research @ OpenAl
- 2022-2023: Research @ GitHub
- since 2023: Founder @ dfdx labs

© @mplappert

LLMs are everywhere ...

Support Guardian Europe
$\xrightarrow{\text { Find inditprondry }}$

The
Guitulian
xancmentin
susiness JuL 26. 2823 7:88 ah

Meta's Open Source Llama Upsets the AI Horse Race

Meta is giving its answer to OpenAl's GPT-4 away for free. The move could intensify the generative AI boom by making it easier for entrepreneurs to build powerful new Al systems.

- This arccie s more than 7 months old
 ChatGPT reaches 100 million users two months after launch
 Unprecedented take-up may make $\boldsymbol{A l}$ cliathot the fastest growing consumer Internet app ever, analysts say

 Chatbots

 Chatbots}Ther/arsel

Amazon will invest up to $\$ 4$ billion into OpenAl rival Anthropic
/ The partnership could help Amazon better compete agains Google and Microsoft

ChatCYT, the popular atificial intelifencece chatbot, bas scached 1000 m

featured video
y written by
company's
executives

sourc

- Why did the tomato tur rod?

... but what are they?

In this talk, we'll talk through:

- The basic theory of language modeling
- How we can use this theory to model language in practice
- What Transformer models are and why they work so well
- Why making models large (the L in LLM) is worthwhile
- What in-context learning is and why it works
- Reinforcement learning from human feedback

Part 1: Language modeling theory

Intuition on language modeling

- We want to be able to model language. But what does that mean?
- For example, consider these two sentences:

1. "The quick brown fox jumps over the lazy dog"
2. "The fox is much faster than the lazy dog"

- Intuitively, we can already spot some patterns in this dataset:
- A sentence always appears to start with "The"
- A sentence appears to always end with "the lazy dog"
- After the word "The", it's either "quick" or "fox".
- After the word "fox" it's either "jumps" or "is", but after "The fox" it's always "is" and after "brown fox" it's always "jumps".

Intuition on language modeling

- We want to be able to model language. But what does that mean?
- For example, consider these two sentences:

1. "The quick brown fox jumps over the lazy dog"
2. "The fox is much faster than the lazy dog"

- Intuitively, we can already spot some patterns in this dataset:
- A sentence always appears to start with "The"
- A sentence appears to always end with "the lazy dog"
- After the word "The", it's either "quick" or "fox".
- After the word "fox" it's either "jumps" or "is", but after "The fox" it's always "is" and after "brown fox" it's always "jumps".

Intuition on language modeling

- We want to be able to model language. But what does that mean?
- For example, consider these two sentences:

1. "The quick brown fox jumps over the lazy dog"
2. "The fox is much faster than the lazy dog"

- Intuitively, we can already spot some patterns in this dataset:
- A sentence always appears to start with "The"
- A sentence appears to always end with "the lazy dog"
- After the word "The", it's either "quick" or "fox".
- After the word "fox" it's either "jumps" or "is", but after "The fox" it's always "is" and after "brown fox" it's always "jumps".

Intuition on language modeling

- We want to be able to model language. But what does that mean?
- For example, consider these two sentences:

1. "The quick brown fox jumps over the lazy dog"
2. "The fox is much faster than the lazy dog"

- Intuitively, we can already spot some patterns in this dataset:
- A sentence always appears to start with "The"
- A sentence appears to always end with "the lazy dog"
- After the word "The", it's either "quick" or "fox".
- After the word "fox" it's either "jumps" or "is", but after "The fox" it's always "is" and after "brown fox" it's always"jumps".

Intuition on language modeling

- We want to be able to model language. But what does that mean?
- For example, consider these two sentences:

1. "The quick brown fox jumps over the lazy dog"
2. "The fox is much faster than the lazy dog"

- Intuitively, we can already spot some patterns in this dataset:
- A sentence always appears to start with "The"
- A sentence appears to always end with "the lazy dog"
- After the word "The", it's either "quick" or "fox".
- After the word "fox" it's either "jumps" or "is", but after "The fox" it's always "is" and after "brown fox" it's always "jumps".

Intuition on language modeling

- We want to be able to model language. But what does that mean?
- For example, consider these two sentences:

1. "The quick brown fox jumps over the lazy dog"
2. "The fox is much faster than the lazy dog"

- Intuitively, we can already spot some patterns in this dataset:
- A sentence always appears to start with "The"
- A sentence appears to always end with "the lazy dog"
- After the word "The", it's either "quick" or "fox".
- After the word "fox" it's either "jumps" or "is", but after "The fox" it's always "is" and after "brown fox" it's always "jumps".

Formalizing the intuition

- Let's formalize what we've just done intuitively
- First, we've broken each sentence down into it's words:
"The quick brown fox jumps over the lazy dog" ("The", "quick", "brown", "fox", "jumps", "over", "the", "lazy", "dog")
- So we now have a sequence of words that form a sequence of length T :

$$
s=\left(w_{1}, w_{2}, \ldots, w_{T}\right)
$$

Formalizing the intuition

- Since we care about the distribution of words in our dataset, we have to introduce some probability theory
- What we care about is the joint probability distribution over sequences in our dataset:

$$
p\left(w_{1}, w_{2}, \quad w_{3} \ldots, w_{T-1}, w_{T}\right)
$$

- We can factorize this into a product of conditional probabilities:

$$
\begin{aligned}
& \mathrm{p}\left(\mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{w}_{3}, \ldots, \mathrm{w}_{\mathrm{T}-1}, \mathrm{w}_{\mathrm{T}}\right)=\mathrm{p}\left(\mathrm{w}_{1}\right) \mathrm{p}\left(\mathrm{w}_{2} \mid \mathrm{w}_{1}\right) \mathrm{p}\left(\mathrm{w}_{3} \mid \mathrm{w}_{1}, \mathrm{w}_{2}\right) \\
& \ldots \mathrm{p}\left(\mathrm{w}_{\mathrm{T}} \mid \mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{w}_{3}, \ldots, \mathrm{w}_{\mathrm{T}-1}\right)
\end{aligned}
$$

Formalizing the intuition

- We now have a way to capture our earlier intuitive observations: 1. "The quick brown fox jumps over the lazy dog" 2. "The fox is much faster than the lazy dog"
- A sentence always appears to start with "The":

$$
p(\text { "The" })=1
$$

- After the word "The", it's either "quick" or "fox".
p("quick" | "The") $=0.5$
$p(" f o x " \mid$ "The") $=0.5$

Formalizing the intuition

- We now have a way to capture our earlier intuitive observations: 1. "The quick brown fox jumps over the lazy dog" 2. "The fox is much faster than the lazy dog"
- After the word "fox" it's either "jumps" or "is":
$p(" j u m p s " \mid \quad " f o x ")=0.5$
$p(" i s " \mid$ "fox") $=0.5$
- but after "The fox" it's always "is" and after "brown fox" it's always "jumps": p("is" | "The", "fox") = 1 p("jumps" | "brown", "fox") = 1

Congrats, you now know how to do language modeling

- We've split your sentences into pieces (this is called tokenization)
- Then we've used probability theory (and often conditional probabilities) to find patterns in our data
- The remaining questions are "only" implementation details:
- How do I tokenize?
- How do I find these probabilities?
- So we'll talk about those next

Part 2: A first toy model

Tokenization

- In order to work with probabilities, we had to "chunk" each sentence up into parts to form a sequence of tokens
- This process is called tokenization
- So far, we've used words as tokens in all our examples
- This works but requires a very large vocabulary
- If a word is not in the vocabulary, we cannot represent it
- An obvious alternative: Each character is a token
- This also works but now the problem is that we end up with a lot of tokens (the compression rate of the tokenizer is poor)

Tokenization

- In practice most people today use Byte-Pair Encoding (BPE)
- The algorithm is very simple:
- Start with individual characters / unicode byte sequences
- Given some dataset, find pairs of characters that often appear together and merge them into a new token
- Repeat until a target vocabulary size has been achieved
- Note that this is related to compression:
- Frequently used words \rightarrow fewer tokens
- Infrequently used words \rightarrow more tokens

Tokenization

The quick brown fox jumps over the lazy dog

TEXT
TOKEN IDS

HmqFkMQwr69jHMX*KRciw@cpJTDg@2

Knowunity AI meetup
text

Tokenizations of two example sentences using the GPT-3 tokenizer

n-gram models

- Given a tokenized sequence, how can we learn something about it?
- A super simple model: n-grams
- Basic idea:
- Look at groups of up to n words
- Count their occurrence within a dataset

n-gram models

Bringing back our earlier examples:

1. "The quick brown fox jumps over the lazy dog"
2. "The fox is much faster than the lazy dog"

- Unigrams ($\mathrm{n}=1$):
"The", "quick", "brown", "fox", ...
- Bigrams ($\mathrm{n}=2$):
"The quick", "quick brown", "brown fox", ...
- Trigrams ($\mathrm{n}=3$):
"The quick brown", "quick brown fox", "brown fox jumps", ...

n-gram models

Notice how this is equivalent to conditional probabilities where we condition on n-1 tokens

- Unigrams ($\mathrm{n}=1$):
p("The"), p("quick"), p("brown"), p("fox"),...
- Bigrams ($\mathrm{n}=2$):
p("quick" | "The"), p("brown" | "quick"), ...
- Trigrams ($\mathrm{n}=3$):
p("brown" | "The", "quick"), p("fox" | "quick", "brow"), ...

n-gram models

- For a given dataset, we can find these probabilities by counting
- This is very similar to what we did earlier:
- We looked at the word "The"
- We found that it's always either followed by "quick" or "fox"
- We thus found the probabilities for the bigram
- Once we're done counting, we can generate text by sampling from these probability distributions
- Notice however that this is only practical for small enough n

n-gram models

Below are examples that show generated text where the n-gram model was trained on Shakespeare for different n (always conditioned on "Pardon me, "):

Pardon me, masters Pardon me, then I there nor exp awful rise; / That canst cope you's not pardon theyigh wine it the infection
$\mathrm{n}=1$
mulberry / The youngest, have let us

Pardon me, mine are general. / She for an idle brain, / Beg pardon of the sky

Congrats, you've trained your first language model

- We've used a BPE tokenizer to turn text into a sequence of tokens
- We've used n-gram model with $\mathrm{n} \leq 3$ to learn the conditional probability distribution from a dataset of Shakespeare's writing
- We then were able to sample okay-ish text in that style using this model

Part 3: Neural networks for language modeling

Neural networks for language modeling

- The objective remains the same: Given a dataset of sequences of tokens, learn useful patterns from this data
- Recall the factorization from earlier:
$p\left(x_{1}, x_{2}, x_{3}, \ldots, x_{T-1}, x_{T}\right)=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{1}, x_{2}\right)$
$\ldots p\left(x_{T} \mid x_{1}, x_{2}, x_{3}, \ldots, x_{T-1}\right)$
- We can use a neural network to model each of these conditional probabilities

Neural networks for language modeling

$p\left(x_{1}\right)$

Neural networks for language modeling

Neural networks for language modeling

Neural networks for language modeling

Training

- Notice that we do not need any labeled data. Instead we only require a sequence of tokens.
- We can optimize the neural network very directly via the following loss:
$L=-1 / N \Sigma_{t} \log p\left(x_{t} \mid x_{1}, x_{2}, \ldots, x_{t-1}\right)$
- This loss immediately follows from the factorization we looked at before:
$p\left(x_{1}, x_{2}, x_{3}, \ldots, x_{T-1}, x_{T}\right)=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{1}, x_{2}\right) \ldots$ $p\left(x_{T} \mid x_{1}, x_{2}, x_{3}, \ldots, x_{T-1}\right)$
- We use the logarithm \rightarrow product becomes a sum
- We minimize the loss but want to maximize the probability \rightarrow negative sign
- We compute this loss over N examples at the same time (a batch) \rightarrow average the loss ($1 / \mathrm{N}$)
- This loss is called the negative log likelihood (NLL) loss

A key challenge remains

- We assumed that we can condition on all past tokens \rightarrow this is actually very hard
- Similar to n-grams, neural networks have a finite window of how much context they consider: the context length
- Different neural network architectures exist to gradually increase the context length

Feed-forward neural networks

Convolutional neural networks (CNNs)

Recurrent neural networks (RNNs)

Transformer neural networks

Neural Network

Transformer neural networks

Transformer neural networks

Transformer neural networks

Transformer neural networks

Neural network architectures

- Feed-forward networks: Inherently limited, can model bigrams
- Convolutional neural networks: Can model n-grams but do not scale to large n
- Recurrent neural networks: Can in theory model long time dependencies but are limited by having to store all state in a finite vector
- Transformers: Dynamically attend to tokens and hence do not suffer from the capacity problem in RNNs

Congrats, you now understand neural networks

- We've seen how we can use neural networks to model the conditional probability factorization we've introduced earlier by minimize the negative log likelihood (NLL) loss
- We've seen how context length is a critical problem that is currently best solved by the Transformer architecture

Part 4: In-context learning

The discovery of the sentiment neuron

- Discovered by OpenAl in 2017
- A neural network is trained to do next token prediction on Amazon product reviews
- It learns to detect user sentiment without us training it to do so explicitly

Why is next token prediction so interesting?

- We've seen that next token prediction can be motivated from probability theory, but it has some surprising properties
- It turns out that if we train a large enough model on a large enough and diverse enough dataset a really interesting thing happens: We observe emergent abilities that we did not train the model to do explicitly
- It is not entirely clear why this happens but there's some intuition for why it makes sense: Consider the example of a detective story

In-context learning

- Large language models (LLMs) can learn by showing them examples
- This happens without updating the actual network
- Instead the network seems to have learned a learning algorithm \rightarrow meta learning

The three settings we explore for in-context learning

Zero-shot

The model predicts the answer given only a natural language description of the task. No gradient updates are performed.
Translate English to French: \longleftarrow task description
cheese $=>$

One-shot

In addition to the task description, the model sees a single example of the task. No gradient updates are performed. large corpus of example tasks.

Why does this matter?

The old paradigm

- Collect a specialized dataset
- Train a specialized model
- Now you have a model that can do one thing well but is terrible at everything else

The new paradigm

- Collect a large, diverse dataset
- Train a large model to predict the next token across this large dataset \rightarrow generative pre-training
- Now you have a model that is broadly useful across many tasks
- You literally tell the model what you want it to do \rightarrow prompt engineering

Predictable scaling

- It further turns out that scaling results in smooth, predictable performance improvements (including the model's in-context learning capabilities)

- "Scaling Laws for Neural Language Models", Kaplan et al, 2020

That's why people have been scaling up

The literal recipe for GPT-3

- Collect an internet-sized dataset of text
- Train a very large Transformer model (175B parameters) on next token prediction
- This will literally give you GPT-3*

Congrats, you now understand LLMs circa 2020

- We've seen how generative pre-training can give rise to emergent abilities
- We've seen how this can be used to prompt a model to do a certain task without the need to update or retrain that model
- We've also seen how scale matters
- This is literally all you need to understand GPT-3

Part 5: Instruction following

The limits of next token prediction

```
Prompt:
Please write me a poem
```

Expected Completion:
Machine learning tweaks, the dataset's call,

Eager to learn, you capture it all.
From algorithms to the startup grind,

You seek the truths that science can find.

Actual Completion:
Please write me a novel
Please write me a song Please write me a play Please write me a book [...]

The limits of next token prediction

Prompt:
Please tell me how to build a bomb

Expected Completion:
I'm sorry, but I cannot help you with this.

Actual Completion:
To build a bomb, you first have to

The limits of next token prediction

- Next token prediction will produce output that is likely but not necessarily what you wanted or asked for
- This is a problem of steerability: How can I instruct a model to do something and then make sure it actually does it
- This is also a problem related to alignment and AI safety research: How do you ensure the model does what you want it to do and refuses to answer certain questions

RLHF to the rescue

- The core idea is simple:
- Collect some prompts
- Collect different outputs from the model
- Use humans to label which outputs were good vs. bad
- Use reinforcement learning ($R L$) to train the model to produce more of the good outputs and less of the bad ones
- This process is called reinforcement learning from human feedback (RLHF)
- This process can be used to:
- Improve the steerability of the model (instruction following)
- Train to model to refuse to answer certain questions (safety)

The full RHLF pipeline

The full RHLF pipeline

Training language models to follow instructions with human feedback, Ouyang et al, 2022

The full RHLF pipeline

Training language models to follow instructions with human feedback, Ouyang et al, 2022

The literal recipe for GPT-4 / ChatGPT

- Collect an internet-sized dataset of text
- Train a very large Transformer model (??? parameters) on next token prediction
- Use RLHF to ensure the model follows instructions and to enforce safety standards
- This will literally give you GPT-4*

Congrats, you now understand modern LLMs

- RLHF is the missing ingredient that makes these models truly useful and deployable
- Ensures steerability via instruction following
- Enforces safety standards
- In very rough terms, GPT-3 + RLHF \rightarrow success of ChatGPT
- GPT-4 is larger and supports multimodal input

Part 6: Summary

Summary

- Language modeling is based in probability theory and often requires us to model the conditional probabilities of a tokenized sequence
- We can use neural networks to model these conditional probabilities. Transformers are currently the most effective architecture to do this.
- Training large models on large datasets gives rise to in-context learning, which is a form of meta learning
- Applying RLHF makes these models steerable and safe to deploy

Further reading

- Andrej Karpathy's excellent YouTube lectures: http://bit.ly/karpathy-lectures
- Seriously if you're interested in this stuff watch them
- Language Models Are Few-Shot Learners,

Brown et al, 2020

- The GPT-3 paper
- Training language models to follow instructions with human feedback, Ouyang et al, 2022
- The RLHF paper
- Constitutional AI: Harmlessness from AI Feedback, Bai et al, 2022
- RLHF but with Al-written feedback
- GPT-4 Technical Report, OpenAI, 2023
- Llama 2: Open Foundation and Fine-Tuned Chat Models, Touvron et al, 2023
- The most important open-source LLM

Thank you for your attention!

