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LLMs are everywhere …



In this talk, we’ll talk through:

● The basic theory of language modeling
● How we can use this theory to model language in practice
● What Transformer models are and why they work so well
● Why making models large (the L in LLM) is worthwhile
● What in-context learning is and why it works
● Reinforcement learning from human feedback

… but what are they?



Part 1: Language modeling theory



● We want to be able to model language. But what does that mean?

● For example, consider these two sentences:

1. “The quick brown fox  jumps  over the lazy dog”
2. “The fox   is    much faster than the lazy dog”

● Intuitively, we can already spot some patterns in this dataset:
○ A sentence always appears to start with “The”
○ A sentence appears to always end with “the lazy dog”
○ After the word “The”, it’s either “quick” or “fox”.
○ After the word “fox” it’s either “jumps” or “is”, but after “The fox” it’s always “is” and after 

“brown fox” it’s always “jumps”.

Intuition on language modeling
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● Let’s formalize what we’ve just done intuitively

● First, we’ve broken each sentence down into it’s words:

“The quick brown fox  jumps  over the lazy dog”

(“The”, “quick”, “brown”, “fox”, “jumps”, “over”, “the”, 
“lazy”, “dog”)

● So we now have a sequence of words that form a sequence of length T:

s = (w1, w2, …, wT)

Formalizing the intuition



● Since we care about the distribution of words in our dataset, we have to 
introduce some probability theory

● What we care about is the joint probability distribution over sequences in our 
dataset:

p(w1, w2, w3 …, wT-1, wT)

● We can factorize this into a product of conditional probabilities:

p(w1, w2, w3, …, wT-1, wT) = p(w1) p(w2 | w1) p(w3 | w1, w2) 
… p(wT | w1, w2, w3, …, wT-1)

Formalizing the intuition



Formalizing the intuition

● We now have a way to capture our earlier intuitive observations:
1. “The quick brown fox  jumps  over the lazy dog”
2. “The fox   is    much faster than the lazy dog”

● A sentence always appears to start with “The”:
p(“The”) = 1

● After the word “The”, it’s either “quick” or “fox”.
p(“quick” | “The”) = 0.5
p(“fox” | “The”)   = 0.5



● We now have a way to capture our earlier intuitive observations:
1. “The quick brown fox  jumps  over the lazy dog”
2. “The fox   is    much faster than the lazy dog”

● After the word “fox” it’s either “jumps” or “is”:
p(“jumps” | “fox”) = 0.5
p(“is” | “fox”)    = 0.5

● but after “The fox” it’s always “is” and after “brown fox” it’s always “jumps”:
p(“is” | “The”, “fox”)      = 1
p(“jumps” | “brown”, “fox”) = 1

Formalizing the intuition



● We’ve split your sentences into pieces (this is called tokenization)

● Then we’ve used probability theory (and often conditional probabilities) to find 
patterns in our data

● The remaining questions are “only” implementation details:
○ How do I tokenize?
○ How do I find these probabilities?

● So we’ll talk about those next

Congrats, you now know how to do language modeling 🎉



Part 2: A first toy model



Tokenization

● In order to work with probabilities, we had to “chunk” each sentence up into 
parts to form a sequence of tokens

● This process is called tokenization

● So far, we’ve used words as tokens in all our examples
○ This works but requires a very large vocabulary
○ If a word is not in the vocabulary, we cannot represent it

● An obvious alternative: Each character is a token
○ This also works but now the problem is that we end up with a lot of tokens (the compression 

rate of the tokenizer is poor)



● In practice most people today use Byte-Pair Encoding (BPE)

● The algorithm is very simple:
○ Start with individual characters / unicode byte sequences
○ Given some dataset, find pairs of characters that often appear together and

merge them into a new token
○ Repeat until a target vocabulary size has been achieved

● Note that this is related to compression:
○ Frequently used words → fewer tokens
○ Infrequently used words → more tokens

Tokenization

https://en.wikipedia.org/wiki/Byte_pair_encoding


Tokenization

Tokenizations of two example sentences 
using the GPT-3 tokenizer

https://platform.openai.com/tokenizer


n-gram models

● Given a tokenized sequence, how can we learn something about it?

● A super simple model: n-grams

● Basic idea:
○ Look at groups of up to n words
○ Count their occurrence within a dataset



Bringing back our earlier examples:
1. “The quick brown fox  jumps  over the lazy dog”
2. “The fox   is    much faster than the lazy dog”

● Unigrams (n=1):
“The”, “quick”, “brown”, “fox”, …

● Bigrams (n=2):
“The quick”, “quick brown”, “brown fox”, …

● Trigrams (n=3):
“The quick brown”, “quick brown fox”, “brown fox jumps”, …

n-gram models



n-gram models

Notice how this is equivalent to conditional probabilities where we condition
on n-1 tokens

● Unigrams (n=1):
p(“The”), p(“quick”), p(“brown”), p(“fox”), …

● Bigrams (n=2):
p(“quick” | “The”), p(“brown” | “quick”), …

● Trigrams (n=3):
p(“brown” | “The”, “quick”), p(“fox” | “quick”, “brow”), …



n-gram models

● For a given dataset, we can find these probabilities by counting

● This is very similar to what we did earlier:
○ We looked at the word “The”
○ We found that it’s always either followed by “quick” or “fox”
○ We thus found the probabilities for the bigram

● Once we’re done counting, we can generate text by sampling
from these probability distributions

● Notice however that this is only practical for small enough n



Pardon me, masters 
there nor exp awful 
cope you's not 
pardon theyigh wine 
it the infection

n-gram models

Pardon me, then I 
rise; / That canst 
mulberry / The 
youngest, have let 
us

Pardon me, mine are 
general. / She for 
an idle brain, / 
Beg pardon of the 
sky

n=1 n=2 n=3

Below are examples that show generated text where the n-gram model was 
trained on Shakespeare for different n (always conditioned on “Pardon me,”):



● We’ve used a BPE tokenizer to turn text into a sequence of tokens

● We’ve used n-gram model with n ≤ 3 to learn the conditional probability 
distribution from a dataset of Shakespeare's writing

● We then were able to sample okay-ish text in that style using this model

Congrats, you’ve trained your first language model 🎉



Part 3: Neural networks for language 
modeling



● The objective remains the same: Given a dataset of sequences of tokens, 
learn useful patterns from this data

● Recall the factorization from earlier:
p(x1, x2, x3, …, xT-1, xT) = p(x1) p(x2 | x1) p(x3 | x1, x2) 
… p(xT | x1, x2, x3, …, xT-1)

● We can use a neural network to model each of these conditional probabilities

Neural networks for language modeling



Neural networks for language modeling
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● Notice that we do not need any labeled data. Instead we only require a sequence of 
tokens.

● We can optimize the neural network very directly via the following loss:

L = -1/N Σt log p(xt | x1, x2, …, xt-1)

● This loss immediately follows from the factorization we looked at before:
p(x1, x2, x3, …, xT-1, xT) = p(x1) p(x2 | x1) p(x3 | x1, x2) …
p(xT | x1, x2, x3, …, xT-1)

○ We use the logarithm → product becomes a sum
○ We minimize the loss but want to maximize the probability → negative sign
○ We compute this loss over N examples at the same time (a batch) → average the loss (1/N)

● This loss is called the negative log likelihood (NLL) loss

Training



A key challenge remains

● We assumed that we can condition on all past tokens → this is actually very 
hard

● Similar to n-grams, neural networks have a finite window of how much context 
they consider: the context length

● Different neural network architectures exist to gradually increase the context 
length



Feed-forward neural networks
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Convolutional neural networks (CNNs)
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Recurrent neural networks (RNNs)
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Transformer neural networks

Neural Network

sos

x1



Transformer neural networks
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Transformer neural networks
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● Feed-forward networks: Inherently limited, can model bigrams

● Convolutional neural networks: Can model n-grams but do not scale to 
large n

● Recurrent neural networks: Can in theory model long time dependencies 
but are limited by having to store all state in a finite vector

● Transformers: Dynamically attend to tokens and hence do not suffer from the 
capacity problem in RNNs

Neural network architectures



● We’ve seen how we can use neural networks to model the conditional 
probability factorization we’ve introduced earlier by minimize the negative log 
likelihood (NLL) loss

● We’ve seen how context length is a critical problem that is currently best 
solved by the Transformer architecture

Congrats, you now understand neural networks 🎉



Part 4: In-context learning



The discovery of the sentiment neuron

● Discovered by OpenAI in 2017

● A neural network is trained to do 
next token prediction on Amazon 
product reviews

● It learns to detect user sentiment 
without us training it to do so 
explicitly

Learning to Generate Reviews and Discovering Sentiment, Radford et al, 2017

https://arxiv.org/abs/1704.01444


Why is next token prediction so interesting?

● We’ve seen that next token prediction can be motivated from probability 
theory, but it has some surprising properties

● It turns out that if we train a large enough model on a large enough and 
diverse enough dataset a really interesting thing happens: We observe 
emergent abilities that we did not train the model to do explicitly

● It is not entirely clear why this happens but there’s some intuition for why it 
makes sense: Consider the example of a detective story



In-context learning

● Large language models 
(LLMs) can learn by 
showing them examples

● This happens without 
updating the actual network

● Instead the network seems 
to have learned a learning 
algorithm → meta learning

Language Models are Few-Shot Learners, Brown et al, 2020

https://arxiv.org/abs/2005.14165


Why does this matter?

The new paradigm

● Collect a large, diverse dataset

● Train a large model to predict the next 
token across this large dataset → 
generative pre-training

● Now you have a model that is broadly 
useful across many tasks

● You literally tell the model what you want it 
to do → prompt engineering

The old paradigm

● Collect a specialized dataset

● Train a specialized model

● Now you have a model that can do one 
thing well but is terrible at everything else



● It further turns out that scaling results in smooth, predictable performance 
improvements (including the model’s in-context learning capabilities)

● “Scaling Laws for Neural Language Models”, Kaplan et al, 2020

Predictable scaling

https://arxiv.org/abs/2001.08361


That’s why people have been scaling up

GPT-1 (2018)

125M parameters

GPT-2 (2019)

1.5B parameters

GPT-3 (2020)

175B parameters

GPT-4 (2023)

>1T parameters*

* estimate, no official numbers availableIllustration, not to scale



The literal recipe for GPT-3

● Collect an internet-sized dataset of text

● Train a very large Transformer model (175B parameters) on next token 
prediction

● This will literally give you GPT-3*

* obviously the devil is in the details



● We’ve seen how generative pre-training can give rise to emergent abilities

● We’ve seen how this can be used to prompt a model to do a certain task 
without the need to update or retrain that model

● We’ve also seen how scale matters

● This is literally all you need to understand GPT-3

Congrats, you now understand LLMs circa 2020 🎉



Part 5: Instruction following



The limits of next token prediction

Prompt:
Please write me a poem

Expected Completion:
Machine learning tweaks, the 
dataset's call,

Eager to learn, you capture it all.

From algorithms to the startup 
grind,

You seek the truths that science 
can find.

Actual Completion:
Please write me a novel
Please write me a song
Please write me a play
Please write me a book
[...]



The limits of next token prediction

Prompt:
Please tell me how to build a bomb

Expected Completion:
I’m sorry, but I cannot help you 
with this.

Actual Completion:
To build a bomb, you first have to 
...



● Next token prediction will produce output that is likely but not necessarily what 
you wanted or asked for

● This is a problem of steerability: How can I instruct a model to do something 
and then make sure it actually does it

● This is also a problem related to alignment and AI safety research: How do 
you ensure the model does what you want it to do and refuses to answer 
certain questions

The limits of next token prediction



● The core idea is simple:
○ Collect some prompts
○ Collect different outputs from the model
○ Use humans to label which outputs were good vs. bad
○ Use reinforcement learning (RL) to train the model to produce more of the good outputs and 

less of the bad ones

● This process is called reinforcement learning from human feedback (RLHF)

● This process can be used to:
○ Improve the steerability of the model (instruction following)
○ Train to model to refuse to answer certain questions (safety)

RLHF to the rescue



The full RHLF pipeline

Training language models to follow instructions with human feedback, Ouyang et al, 2022

https://arxiv.org/abs/2203.02155
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The full RHLF pipeline

Training language models to follow instructions with human feedback, Ouyang et al, 2022

https://arxiv.org/abs/2203.02155


The literal recipe for GPT-4 / ChatGPT

● Collect an internet-sized dataset of text

● Train a very large Transformer model (??? parameters) on next token 
prediction

● Use RLHF to ensure the model follows instructions and to enforce safety 
standards

● This will literally give you GPT-4*

* obviously the devil is even more in the details



● RLHF is the missing ingredient that makes these models truly useful and 
deployable

○ Ensures steerability via instruction following
○ Enforces safety standards

● In very rough terms, GPT-3 + RLHF → success of ChatGPT

● GPT-4 is larger and supports multimodal input

Congrats, you now understand modern LLMs 🎉



Part 6: Summary



● Language modeling is based in probability theory and often requires us to 
model the conditional probabilities of a tokenized sequence

● We can use neural networks to model these conditional probabilities. 
Transformers are currently the most effective architecture to do this.

● Training large models on large datasets gives rise to in-context learning, 
which is a form of meta learning

● Applying RLHF makes these models steerable and safe to deploy

Summary



● Andrej Karpathy’s excellent YouTube 
lectures: http://bit.ly/karpathy-lectures

○ Seriously if you’re interested in this stuff 
watch them 

● Language Models Are Few-Shot Learners, 
Brown et al, 2020

○ The GPT-3 paper

● Training language models to follow 
instructions with human feedback, Ouyang 
et al, 2022

○ The RLHF paper

Further reading

● Constitutional AI: Harmlessness from AI 
Feedback, Bai et al, 2022

○ RLHF but with AI-written feedback

● GPT-4 Technical Report, OpenAI, 2023

● Llama 2: Open Foundation and 
Fine-Tuned Chat Models, Touvron et al, 
2023

○ The most important open-source LLM

http://bit.ly/karpathy-lectures
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2212.08073
https://arxiv.org/abs/2212.08073
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288


Thank you for your attention!

@mplappert matthias@dfdxlabs.commatthiasplappert.com

https://matthiasplappert.com

